Multi-Level *hp*-Adaptivity: High-Order Mesh Adaptivity without the Difficulties of Constraining Hanging Nodes

Classical *hp*-Refinement Schemes

Idea: Coarse elements with a high error contribution are replaced by finer elements.

Advantage: High flexibility and possibility of automation

Challenge: Hanging nodes render the mesh irregular, as the shape functions between the interconnected elements are no longer C^0 continuous. These, therefore, require appropriate constraining.

The implementation of constraining is challenging, especially when multiply constrained modes have to be handled. Therefore, most *hp*-Finite Element codes restrict themselves to *1-irregular* meshes.

The *hp*-d-Refinement Scheme

Idea: Capture fine-scale solution characteristics by superposing a fine *h*-overlay mesh on a coarse, high-order base mesh in the domain of interest [1].

Linear independence is guaranteed by “deactivating” all direct descendants of base mesh nodes.

Compatibility is ensured by applying homogeneous Dirichlet boundary conditions on the overlay mesh.

Advantage: Hanging nodes are avoided by definition.

Hierarchical Extension

Idea: Hierarchically refine towards a singularity using multiple overlay meshes [2].

Advantage: Fast refinement towards singularity.

Multi-Level *hp*-Refinement

Idea: Use hierarchical, *high-order overlay meshes* to yield the full potential of *hp*-refinement schemes [3].

Linear independence is ensured by deactivating all topological components that have active sub-components.

Compatibility is ensured by homogeneous Dirichlet boundary conditions on the overlay meshes.

Advantage: Yield full *hp*-refinement capabilities with arbitrary hanging nodes at a comparably small implementational effort.

Numerical Examples

Non-Smooth Solution Benchmark

Result: Exponential convergence for non-smooth problems in the pre-asymptotic range.

Automatic Multi-Level *hp*-Refinement and Coarsening

Idea: Solve the wave equation and refine elements with high energy contribution *\|\hat{u}\|_H^2 > tol.*

References

Nils Zander*, Tino Bog, Stefan Kollmannsberger, Ernst Rank
Computation in Engineering
Technische Universität München

Dominik Schillinger
Department of Civil Engineering, University of Minnesota