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SUMMARY

Recently, a new class of error indicators and estimators for the finite element method has been introduced
which is particularly easy to implement into existing finite element codes. This paper proves that the new
indicators are equivalent to those analysed earlier by Babuska, thus showing that the rigorous mathematical
results for the well-known jump indicator apply also for the new ones.

INTRODUCTION

Without assessment of the reliability of the results it is hardly reasonable to use numerical methods
like the finite element method in such safety-sensitive areas as shape optimization of engine parts,
construction of airplanes or dimensioning of nuclear power plants. Therefore, the a posteriori
error estimation is now considered to be nearly as important as the finite element analysis itself.
Much work has been done during the past years in this field (see, for example, Reference 1 for
a survey) and reliable error indicators and estimators are now available.

An error estimator 1 gives a measure of the magnitude of the error in a certain, specified norm,
for example the energy norm. As the error estimator should be reliable, it is highly desirable that
the following property can be proven mathematically:

There exist positive constants C, and C,, which are independent of the exact solution u and the
specific finite element mesh, so that

Cin<|e[|<C2m (1)

holds, where | e || is the norm of the error e = u — U, U being the finite element approximation
to u. Cy and C, should be close to 1 and the efficiency index /| e || should tend to 1 as the error
goes to 0.

It has been shown? that property (1) holds for linear, elliptic boundary-value problems of
second-order for an error estimator m‘”) which is defined as

ree

N
= A | (2)
i=1 REL b
with error indicators N being summed over all elements i = 1, ..., N and each A’ being the
local projection of the error to a patch of neighbouring elements of element i. In the case of linear
elements, \¢) can be computed from the jumps of the derivatives of the finite element approxi-
mation across element boundaries.
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To be specific, let

—kAu=f on in R? (3)
+ boundary conditions

be the model boundary-value problem and let us approximize (3) by linear elements. Then AP s
given by

»  h
(= 2 2

where T, is the boundary of the element {); and J(V.), J (V,) are the jumps of the ‘velocities’
V= (V. V,)T = —kgrad (V) )

of the finite element approximation across the edges of (.. 4 is the diameter of the element. The
reliability of (4) has not only been established mathematically by proving (1), but also been shown
numerically in various test examples.?

Yet, it is not straightforward to implement (4) into existing finite element codes, because the
usual data structure provides no information about the neighbours of a specific element.

A NEW ERROR INDICATOR

Recently, a class of new error indicators and estimators has been presented,* which is easy to
implement into existing finite element codes without adding a new data structure to the programs.
Consider again model problem (3) and let

v={(v,v,)T=— kgrad () ' (6)

be the velocity of the exact solution of (3). The error in energy norm over an element Q; is then
given by

17k 0

0 L’k) kel @

lell .0, = - J (v=V)Tgrad(u-0) dQ=J (V*V)T(
Q; ;
The finite element approximation V to the velocity v is discontinuous across element edges and
nearly all commercial codes provide means to compute smoothed velocities (resp. smoothed stresses
in elasticity problems) by various smoothing techniques, e.g. nodal averaging, local or global
smoothing.3-6
Let us now denote these smoothed velocities by V = (V,,V,)T and replace v by ¥ in expression
(7) for the error in energy norm to define '

1k 0

0 I/k) (V-1V)dQ (8)

M = f (- V)T(
Q;
If we assume that V is a better approximation to v than V, then AP, which will be called ‘smoothed-
stress’ error indicator is an approximation to the error in energy norm in the element i. A is
particularly easy to compute, as V is usually available and the integral can be evaluated numerically
using the element mass matrices for (3).

This derivation of the smoothed-stress indicators is, of course, heuristic and assumes implicitly
superconvergence of the smoothed velocities resp. stresses. The reliability of the estimators has
been shown in various test examples.* In addition, we will give in the following a mathematical
foundation of these indicators and corresponding estimators in showing that (1) holds, too. We
will do this, proving that A{*) is equivalent to A{", i.e. that there are constants C; and Cy, so that

GAPSMISCND G5, Ci>0 B )
holds.

A ONE-DIMENSIONAL PROBLEM

Consider first the one-dimensional problem

—ku' () =f(x)  x€(ab) (10)
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;.

Figure 1.

with appropriate boundary conditions and a finite element approximation to u with linear elements:

Ulx) = 2, Ni(x) U; (11)
i=1
The ‘jump’-error indicator and estimator has the following form:

NP = 2 + L)

nU” = > A (12)

i=1
h=%4, —x
where J,(U") and J(U') are the jumps of U’ on the left and right node, respectively, of element

i
The smoothed stress indicator resp. estimator is given by

?\,(”2=JM (V=W k~1(V=-V)dx

n

@’ = A? (13)

i=1
where V is the ‘velocity’ or ‘stress’ of the finite element approximation: _
V=—kU (14)

V is a smoothed stress obtained from the finite element approximation V. V has a jump of
k J,(U") and k J(U’) at the left and right node of an element. Assume now that V' is obtained
by linearly interpolating the averaged nodal values of V (see Figure 1). Then, V can be written
as

Vix) = V(x) — 12k J(U") + 1(2h) k (1,(U") + J(U")) x (15)
Inserting (15) into (13) we get
A = kid r ((11 +17) % - J1)2 dx = % J2=J1J, + P) (16)
o & ; :
Furthermore, we have ‘ '
-5+ <Ui—-NIJ+ID<15(i+)) (17)

Using (17), (16) and (12) we get immediately 7
INZEE NS PN (18)
The extremal cases in (18) are the following:

(a) J, = J, (see Figure 2). In this case A’ =\, i.e. the smoothed-stress indicator, is equal to
the jump indicator.

(b) J, = — J, (see Figure 3). In this case we have A" = V3 N/

Case (b) will never occur in a properly refined mesh. If the mesh is refined such that the error
indicators are distributed equally (what is attempted in an adaptive mesh-refinement), the limiting
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Figure 2.
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x

Figure 3.

case will always be (a). This means that the corresponding error estimators 7’ and n” will be
asymptotically the same.

THE TWO-DIMENSIONAL PROBLEM

Consider again model problem (3), which shall be approximated by bilinear finite elements. For
simplicity, we will first assume a square mesh with side-length 4 of each element. Jump indicators
and smoothed-stress indicators are defined in equations (4) and (8). Assume now that the smoothed
velocities V, and V, are defined as

4
V. (xr.y) = 2, Ni(xy) Vo,
i=1

V,(x.y) = z} Ni(x.y) Vy | (19)

where N; are the bilinear shape functions and Veis V'N- are the averaged nodal velocities.
Consider now Figure 4. In element 1, the differences of the smoothed velocities at node 3 and
the finite element velocities can be written as

V=V, =@V, +3JNV,) +JO(V,) + J*(V,))/8 (20)
¥, =V, =@ 1Y) +3. 905 +-JO0% )b SO NE (21)
From the continuity of the finite element approximation we get the following relations:
RV =0 VL) =J9N (1) =ivoll, =0 (22)
JOV,) =TV, (23)
JEOV,) =JO(V,) (24)

Inserting (22)-(24) into (20) and (21) yields
Ve =V, =05J%V,) (25)
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Figure 4.
and
V, =V, =0:570(V,) (26)

As the difference of the smoothed and the original approximation is now reduced to only one
jump at each node, we can omit the superscript for the jumps and denote the jumps of V, and
V,atnode i, i = 1,...,4 by J;, and J;,. Integral (8) can be considered a ‘mass’ of element i, 50
it can be rewritten in the following form, taking into account the appropriate signs of the jumps
at nodes 1 to 4: '

h2
)\‘(3)2 = 16_)’(' ((—jl .nyZ..rsJ3..ra_J4..r) M (_Jl.x:]Z,_in.xs_J-i.x)T (27)

+ (_Jl,y,_'].?.ysjfi.y:jﬁt.y) M (_Jl.y:-_JZ.y vJB.y:J4.,v)T)

Here, M is a mass matrix for a standard square element of side-length 2.
Evaluation of (27) with a consistent mass matrix (see, for example, Reference 6), which gives
the exact integrals for linear jumps yields

W2
144 k

(CEUER N EN o L SV (R P SR % R JUNE o P LT 0

=21adsx + Jadas) + (28)
tAUT, H IR, H TR ATy Y iyl — Ty, — Jag sy s das)

= 2 sy Filsday))

Evaluating (27) with a lumped mass matrix gives

R‘(S-C)Z =

a2 /4
N 1% (Zl 2.+ J,%_v) (29)

In Reference 3 the following numerical approximation of the jump indicator (4) is suggested:

2 k&
N = —-( 2+ JE‘.) 30

We are now able to show the equivalence of the jump indicator and the smoothed-stress indicators
and thus, summing over all elements. the desired property (1) for the related error estimators.
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Obviously, the indicators A{*:" in (29) of the lumped evaluation of integral (8) is V3 times
A2, so (1) holds with

Ci=CJ/V3,; C3=C.lV3 (31)
To show the equivalence of A and A" consider first the expression
pi=4(a* + b+ ¢+ d> —ab + ad + bc — cd) — 2(ac + bd) (32)

corresponding to the jumps of V, resp. V, in (28). From
O0<(a—b+d—c)’=a>+b*+c*+d*+2(—ab + ad — ac — bd + bc — cd) (33)
we get immediately
p=3(a*+b%+ ¢? + d*) + 2ad — ab + bc ~ cd) = (34)
(@a=by+(a+d?+(b+c)+(c—d2+a+b2+32+ P

and thus
R=a’+ b2+ 2+ d? (33)
Using now [2ab| < a® + b* we get
R<9(a®+ b2+ 2+ d?) (36)
Inserting (35) and (36) into (28) for the jumps in V, and V, yields the desired result:
o 2_ 2 (&
i | S ) <ot e (S e ) @

Thus, inequality (1) holds for m%-<) with

Ci=CJ/V3 ; Ci=C,V3

Finally, the equivalence of n? and 1 for general bilinear elements follows from the fact that
then the expressions of 1) and 0 differ from (28) to (30) by constants depending only on the
Jacobian J of the bilinear mapping. As long as the Jacobian is bounded, i.e. there exist constants
€y, € = ¢ > 0 so that

¢ h? < |detJ] < ¢, h? (38)

the estimators are equivalent again, proving property (1) for the smoothed-stress estimators.

CONCLUSIONS

It has been shown that a class of recently introduced error indicators and estimators for bilinear
finite element approximations to linear, elliptic boundary-value problems of second order is
equivalent to estimators which were presented earlier in Reference 3. Therefore, the mathematical
property of being a simultaneous upper and lower estimator in the energy norm carries over to
the new estimators. The new estimators are particularly easy to implement into existing finite
element codes and promise cheap and reliable quality control of finite element results. Moreover,
they can easily be adapted to other norms or higher order elements, although in these cases the
proof of (1) is not straightforward.
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