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Abstract. Local oxidation of silicon is an important step in processing highly integrated
semiconductor devices. Oxygen diffuses through a layer of silicon dioxide to the interface with pure
silicon below the dioxide. There the oxygen reacts with silicon to new dioxide which has more than
twice the volume of the original silicon. Thus silicon is consumed and the dioxide layer is lifted up.
In the standard finite element approach for simulation of this local oxidation the interface is
modelled as a sharp line, making it necessary to remesh the dioxide-range. The new approach
presented in this paper models the interface as a smooth transition zone and the dioxide is
characterized as a density function over the domain of computation. Thus it is possible to solve on a
topologically invariant finite element mesh in a time stepping procedure a coupled system of
equations for the oxygen diffusion, the chemical reaction and the structural displacement.

Numerical examples show the advantages of the new approach.
1. Introduction

Local oxidation of silicon (LOCOS) is a thermal step of semiconductor device
processing, where oxygen diffuses through a layer of already existing silicon
dioxide to the interface with pure silicon below. There silicon reacts with the
oxygen to new dioxide, yielding strains due to the bigger volume of the dioxide.
These strains cause a displacement of the structure, lifting up the old oxide-layer.

A numerical simulation of LOCOS has to deal with two main problems; the
first one is how to couple the volumetric expansion at the interface in a consistent
way to the displacement problem, the second one is the question how to track the
moving interface line numerically over the time of the oxidation.



In the literature the interface is usually treated as a sharp line which defines
the moving boundary for the differential equations of the diffusion and
displacement problems. The strains arising from the chemical reaction are
transformed to a displacement boundary condition, assuming a displacement
perpendicular to the boundary. The problem of tracking the moving interface is
usually treated by variable mesh algorithms. Finite difference approaches ! map
the domain of computation in each time step to a rectangular domain, yielding
immediate limitations to the generality of the domains of simulation. Boundary
element methods 2 need only model the boundary of the dioxide domain making it
extremely easy to update the geometry after each time step. Yet the boundary
element method suffers from its limitation to essentially linear problems, whereas
a general computer code for simulation of local oxidation should be able to treat
material nonlinearities like viscous flow of the dioxide and stress dependant
diffusion coefficients or reaction rates.

Finite element methods for LOCOS simulation 3,4 update the mesh after every
timestep. This often yields strongly distorted elements, or, if these are to be
omitted, remeshing is necessary after each few steps.

All of the approaches mentioned above are even in two dimensions so complex
that an application to threedimensional LOCOS simulation seems to be hardly
possible. Strongly distorted elements in three dimensions are completely
unacceptable and remeshing complex 3D-structures would be extremely time
consuming.

In this paper an approach will be presented which is in a sense closer to physics,
as it does not assume a sharp interface line but a narrow interface zone between

silicon and oxide. The main advantage is, yet, that the approach can be transformed
to three space dimensions much easier than the standard one. The basic idea goes
back to methods which have been applied successfully to free surface seepage
problems for more than a decade 5.6,

2. Definition of the problem

2.1 Diffusion of oxygen

The timescale for the diffusion of oxygen through the oxide is much smaller
than the timescale for the movement of the interface, so the problem of local
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oxidation can be treated quasi-stationary, i.e. in each time step stationary problems
for diffusion (and displacement) can be solved.

Let domains and boundaries be notated as in figure 1. Oxygen (or water in 'wet
oxidation') diffuses through the SiOg-range 1. In the standard approach the
differential equation is given by
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Figure 1 : domains and boundaries

Dy is the diffusion coefficient for oxygen in SiOg, C* the ambient concentration
and kg the chemical reaction coefficient at the interface with Si. Q4 is a layer of
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silicon-nitride masking the dioxide. As Si3N4 is nearly impertinent for oxygen, this
layer can be neglected for the diffusion and has, due to its rigidity, only meaning for
the structural displacement.

Formulation (1) assumes a sharp interface between Si and SiO2. From physical
reasons and, as it will be shown, for numerical advantages this assumption shall be
weakened and instead of a boundary condition on I'y a 'sink' in a reaction range Q2

around the interface will be used (figure 2).
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Figure 2 : domains and boundaries (new formulation)
The corresponding differential equationis:
V.Dex)VC) =kq(x)C on QUQ2 UQj
with the boundary conditions (2)
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Dy is now a diffusion coefficient depending on the position x, kq is the strength

of the sink, where



kq(x) =0 for xe (3)
The physical meaning of k4 and Dgon Q22 and Q3 will be given later.

Equation (2) will now be transformed into its weak formulation.
Define the differential operator

d
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Let Q = Q1 U Q2 U Q3 and define as test space Hyp'(Q) and as trial space H!(Q).
Then a function C(x,y) € HY{Q) has to be found, which satisfies the Dirichlet
boundary conditions so that for allw € Hy'(Q) :
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2.2 The oxide growth

At the interface I'j or, in the new formulation, in the interface range Qg the
following chemical reactions take place:
Si + 02 — Si0Og fordryoxidation
Si + 2H90 — SiO2 + 2Hgy for wet oxidation.
The chemical reaction results in a volumetric expansion

Vsi - 2.2Voxid (6)

All approaches presented in the literature compute boundary displacements
normal to the boundary I'; from the volume expansion. This is surely unphysical in
regions with strongly curved interface or where there is a strong variance of the
oxygen concentration along the interface. These problems do not arise in the
formulation with an interface zone Qo . There, the 'disappearing’ quantity of
oxygen in a time step At is Q = Atk4dC(x,y) and leads to a local volume expansion

AV =12 Q/N; (7);



The factor 1.2 results from (6), N; is the number of unit volumes of oxygen
reacting with one unit volume of silicon. The volume expansion then results in
pre-strains in the formulation of the structural displacement model.

2.3 The structural problem

Let us assume for simplicity that the Si-SiOg2-SigN4-body deforms elastically
what is justified for temperatures below 960° . For higher temperatures
viscoelastic or viscous flow is observed. Yet this does not affect the principle ideas of
this paper, so we will restrict to the elastic case. Let now 8(x,y) = (u(x,y),v(x,y))T be
the displacement field in Q. For simplicity we assume a plane strain state which
makes it possible to integrate analytically over the thickness of the domain.

In theory of linear elasticity with small displacements the strain tensor is

defined as follows :
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Assuming a linear material law the stress tensor is given by
g=M(¢e - gp) 9

gg are pre-strains due to increase of temperature, cristal growth or, as in our case,
volumetric expansions from the chemical reaction. Assuming isotropic material, (9)

reads as
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The external force on the body 2 shall be p(x,y) = (px(x,y),py(x,y)) .
Then the system of differential equations for the elastic body is given by
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Writing (10) as an operator equation yields
A) = LE"M(LgB-e9) + p =0 (109
Dirichlet boundary conditions are
u = up and/or v = Vg on I'p (11)
Neumann boundary conditions are
OxNx + TxyDy = tx and/or txyny + oyny = tyon I'N (12)

where (n,,ny) is the outward normal on I and (t4,ty) = t are boundary tractions.
For a weak formulation of (10) testfunctions y=(wy,wy)T are defined which
vanish at the Dirichlet boundary I'p.
Multiplication of (10") with y, integration over Q and a final partial integration
yields the weak formulation.
Find 8, so that for all testfunctions y
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For our class of problems we can assume the boundary tractions t and the
volume forces p to be 0 throughout the domain, simplifying the righthand side to a
term only involving the prestrains gg.
The local volume expansion AV is related to the prestrain tensor by
AV = egy + gox (14)

Assuming isotropy

g0y = tox = L2AV (15)
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Obviously the assumption of small displacements in the definition (8) of the
strain tensor is not satisfied in the problem of local oxidation with strains of up to
1.2. Yet, in our algorithm the time-stepping procedure will split the problem into a
sequence of subproblems, each of which satisfies the assumption of small strains.
After each time step the geometry of the structure is updated, a procedure
corresponding to the 'updated Lagrange' formulation for problems with large
displacements.

3. The finite element discretization

The Poisson equation (5) and the elasticity equations (13) will be discretized by
finite elements. Concepts are the same for both equations, so we can restrict the
discription to the diffusion part.

The unknown function C shall be approximated by

m
C = Zl aN 16)
i=

with local shape functions Nj . If the same space for shape and testfunctions is used,
the discretized weak formulation cf (5) follows:
Find coefficients aj, i=1,...,m such that for all testfunctions Nj,j=1,...,m
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Equation (17) corresponds to the following system of linear equations
(Ki-Kip)a=0 (18)

For the computation of the matrices Kjand Kjj the domain Q is splitinto elements
Q1 , every shape function N} having support only on elements with the index subset
I from {1, ..,n}.Then(17) can be rewritten as
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Because of their higher accuracy quadrilateral or higher order isoparametric
elements are often prefered to the easiest triangular elements. Then integrals in
(19) have to be approximated by numerical integration. Let xx, k=1, ..., g be
Gaussian integration points in element 1, wi the corresponding weights and |Jj(x)|
the Jacobian of the transformation from a standard element (where the integration
points are originally defined) to element 1 at xi. Then the entries of matrices Kj and
K1 have the following form:

g
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Examining (20) it can readily be seen that material information, i.e. diffusion
coefficient Dq and reaction coefficient kq are evaluated only at the Gaussian points
in each element. These will also be the points where the three subproblems (oxygen
diffusion, chemical reaction and structural displacements) are coupled.

4. The algorithm

For the formulation of an algorithm to simulate the growth of oxide it is
necessary to model the physical behaviour in the interface zone between silicon and
dioxide, i.e. to identify the diffusion coefficient Dg4(x) and the reaction coefficient
kq(x) in the interface and the silicon range. Although there is physical evidence for
a distributed transition zone 7, it is difficult to identify parameters in this zone by
experimental measurements. It is much easier to measure the sharp interface
coefficient kg, which can be interpreted as a bilance coefficient for the distributed
reaction governed by kq and Dq4. A detailed analysis of the relation of kg, k4, and Dq
is given in 8. The result which will be used in the algorithm to be presented here is
the following. Over the domain of computation a density function for silicon dioxzide
n(x) can be defined as the relative volume of dioxide at a point x. n)(x) is 1 in pure



dioxide and 0 in pure silicon. Obviously, k4(x) has to be equal to 0 if n(x) is 1, i.e. in
Q. If

ke? = kq(x) Dg(x) forallxe Qo U Q3 (21)

it can be proven in a onedimensional setting that the growth rate in the sharp

formulation is exactly the same as that in the smoothed formulation. The quotient
kq/Dg can be shown to control the thickness of the interface layer. In 8 the following
relation between n(x) and kqg(x) has been proposed:

kd4(x) = kdmax (1 - n(x)) (22).

With these definitions an algorithm can be formulated which couples the
diffusion problem via the density function and eq. (22) to the displacement problem
at the integration points in the elements. Oxygen 'disappears' in the integration
points of the transition layers, producing new dioxid and thus modifying the
density function and introducing prestrains at the same points for the displacement
problem.

Algorithm :

1. Define an initial domain § and a density distribution n(x) for silicon dioxide,
thus introducing the dioxide, silicon and interface range. (The discretization of the
nitride range is straightforeward and needs not be described explicitly.)

2. Define a finite element mesh and initialize time t = 0.

3. Initialize material coefficients Dy, K4, E and v according to relations (21),(22)
and the density distribution at all integration points.

4, Solve the quasistationary diffusion problem (2).

5. Compute the reacting quantity of oxygen and silicon at each integration point
from (6) and (7).

6. Update the density function n(x) at all integration points.

7. Compute the prestrains at all integration points from the reacting volume.

8. Solve the displacement problem (11).

9. Update nodal coordinates .

10.Set t =t + At and go to step 3.
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4. Numerical examples

In a first numerical example it will be shown in a onedimensional setting
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Figure 3 : Displacement of upper boundary of silicon-dioxide

that under conditions (21) and (22) the smoothed formulation yields , within the
range of the approximation error, the same numerical results as the standard sharp
interface formulation, for which an exact solution is available from the Deal-Grove-
Model 9. Figure 3 shows the displacement of the upper end of silicon dioxide over
the oxidation time. For the computation the following parameters were chosen,
corresponding to wet oxidation at 1000 °C :

C* = .003 part./nm3, D4 = 80000 nm2/s in pure silicon dioxide, ks = 500 nm/s

Over an oxidation time of 4000 sec 20 time steps were performed. The uniform
grid spacing for linear elements was 12 nm, an initial oxide thickness of 36nm was
assumed and 29 elements were used. Figures 3 and 4 show the numerical results
and the relative error for kqmax = 33.33, 41.66 and 50 nm/s as dashed, dotted and
dash-dotted lines compared to the analytical result of the Deal-Grove-model. For all
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Figure 4 : Relative error for the displacement of the upper boundary

three sets of resulting parameters the error compared to the exact solution is (exept
in the first 3 timesteps) nowhere bigger than 1.8%. In figure 5 the concentration of
oxygen for kgmax = 50 is plotted for all time steps. The linear decay of the
concentration corresponds to the dioxide range followed by the strongly decreasing
concentration in the interface range and by a disappearing concentration in the
silicon range. It can be seen that the finite element approximation is able to follow
the relatively sharp decay of concentration in an interface with a width of about 30
nm.

In the second example a birds beak structure is simulated. Elastic and diffusion
parameters are:

E = 2.e-7N/nm2, v =.3 insilicon

E = .66e-7TN/nm2, v = .17 indioxide

E =4.e-7N/nm2, v = .3 innitride

C* = .003 part./nm3, Dq = 80000 nm2/s and ks = 790 nm/s.
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Figure 5: Oxygen concentration for 20 time steps

In the transition zone the elasticity modulus was interpolated between the
silicon and dioxide values according to the density function n. Figure 6 a,b,c shows
the structure before oxidation, after 2 timesteps and after 20 timesteps of 120 sec
each. The main advantage of the new approach can be seen: the interface has no
longer to be tracked by element edges but is given implicitly by the density function
1. For the display, a density of .5 was used as an equivalent sharp interface between
silicon and dioxide.

5.Conclusions

A new approach to simulation of local oxidation of silicon has been given which
allows to treat the free boundary value problem on a topologically invariant finite
element mesh. Unlike the standard approach only one finite element mesh has to
be set up at the beginning of the simulation. The approach can readily be
transformed to threedimensional LOCOS-simulation where it is nearly mandatory
to use a fixed finite element mesh, as remeshing of 3D-structures after every few



Figure 6 : Birds beak : Structure before oxidation, after 4 time steps and after
the end of oxidation

time steps would be extremely costly. Moreover the new approach offers the
possibility to investigate numerically physical phenomena like the roughness of the
interface between silicon and dioxide which can be interpreted as a kind of
transition zone. Finally it should be mentioned that this approach yields
immediately stresses and strains not only in dioxide but also in silicon which could
be used for controlling stress dependencies of dopand diffusion in silicon.
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