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Abstract

Starting from a cellular automaton model (CA) for general conditions on a freeway we come
up with a formulation of an automaton to include the case of hindrances on a road. Investigation
of our model results in a phase diagram introducing a new phase between laminar and jammed
traffic. This phase is characterized by the spatial coexistence of behaviour known from the original
model.

1. Introduction

The growing number of cars involved in street traffic has lead to the investigation of
traffic flow on freeways as early as in the early fifties. First treatment was based on
models involving huge sets of difference or differential equations. Traditionally it was
distinguished between microscopic and macroscopic models. Macroscopic models were
usually ba-ed upon a continuum approach (see Prigogine [1], Lighthill [2] and Daganzo
[3]1). Because of the very high computational effort, microscopic models were not
considered to be of high practical importance until recently computer capacity started to
allow for the simulation of huge particle systems. In Germany this concept was pursued
mainly by the ‘Karlsruher Institut fiir Verkehrswesen’. The models developed there were
all based on Wiedemann’s ‘Car-Following-Theory’ [4] and empirical investigations done
by Leutzbach [5]. As an alternative to those models CA (cellular automata) models
for traffic flow were introduced. In [6] Nagel and Schreckenberg showed that they were
able to reproduce the characteristic ‘start-and-stop’ waves found for freeway traffic under
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regular conditions by a probabilistic seven state CA. This model is further investigated
in [7], where also a comprehensive bibliography on traffic simulation can be found. For
general references on integer value based probabilistic CA rules see [8,9]. In Section
2 of the present paper a short review of this model is given. Section 3 then introduces
our extension of the model to simulate hindrances on the road and gives results of our
investigations. In Section 4 their possible relevance for real traffic is discussed. Problems
concerning the model’s validation are encountered as well.

2. Basic model

The model as proposed by Nagel and Schreckenberg (in the following referred to as
the NaSc model) distinguishes seven possible states for each cell of the automaton -
state O referring to an unoccupied cell whereas states 1 to 6 correspond to cells occupied
by cars of velocity 0 to 5 respectively. The cells are arranged on a line modelling traffic
flow in one direction only. The basic concept of cellular automata is to iterate discrete
states of a cell system in discrete timesteps with each new cell state depending only on
its own value and the one of its neighbors a timestep before. Nagel and Schreckenberg
implement this concept by the following paralleled update rules:

(i) Acceleration: If the velocity of a vehicle is lower than v, and if there is enough
space ahead (v < gap — 1), then the speed is increased by one:
if (v<gap —1) then v :=min[vye, v+ 1];
(ii) Slowing down (due to other cars): If the next car ahead is too close (v >
gap + 1), speed is reduced to gap:
if (v > gap + 1) then v := gap;
(iii) Randomization: With probability p, the velocity of each vehicle (if greater than
zero) is decreased by one:
with probability p : v := max[v — 1,0];
(iv) Car motion: Each car is advanced v sites;
with gap denoting the number of empty sites in front of the vehicle and vy, usually
set to five.

The most important results of this model can be summarized as follows:
When plotted in a space-time diagram, the CA evolution displays the same ‘start-and-
stop” waves as known from Aerial Freeway Photographies [10]. Fig. 1 shows such
a plot from a cellular automaton corresponding to a density of p = 0.2. The density
on a road is defined as follows: p = N/LENGTH, with LENGTH denoting the length ..
of the automaton and N equals the number of occupied sites on the discretized road.
Space direction is horizontal, the time coordinate is downwards, vehicles move to the
right. Each black pixel represents one vehicle. The model evolves from random initial
conditions subject to a predefined global density. The figure shows the first 420 iterations
for a system of size LENGTH = 1110. However, only a window of 550 cells is plotted.
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Fig. 1. Space-time plot for the NaSc model with p=0.2; the figure shows the first 420 iterations in a window
of 550 cells. The system’s length — denoted by LENGTH - is twice this size.

The evolution in the diagram depends on the density. Since we impose circular boundary
conditions the density is constant during the system’s temporal evolution. Whereas we
find laminar traffic at low densities, there are congestion clusters (small jams) at higher
densities. To characterize the dependency of the flow on density the quantity flow is
introduced as follows’ :

N
_ 1
(@)LengTE =D - p= m;”"

where T is the mean velocity obtained by averaging over all cars of the system.
Plotting this quantity versus the density gives the so called fundamental diagram
shown in Fig. 2. Each point corresponds to a fixed density. Simulations are carried out
for 110 000 timesteps starting from a random initial distribution. The first 10* time steps
are discarded to let the transient die out. Then, every 10? iterations one measurement
step is inserted. The final data point is averaged over 100 such measurements. The
curve shows 98 points for p varying from 0.01 to 0.99 in steps of 0.01. For the
exact position of the curves’ maximum, Nagel and Schreckenberg [6] give the value
(Pe» Gmax) = (0.086 = 0.002;0.318 £ 0.001). Roughly speaking p. separates the low
density interval of laminar traffic flow — meaning that arising jams will eventually die out
— from a ‘jammed phase’ characterized by the persistence of jams. At the critical point
pe = 0.086 itself the distribution of traffic jam lifetimes, P (¢), scales as P () ~ 13122

! In some articles this quantity is also referred to as ‘flux’ or ‘throughput’.

2 Note that this picture is very rough, For detailed investigations concerning the criticality of the system
see {11]. The actual scaling law proposed there is Psury(t,A) ~ 4. f(r- A™), where A = p — pc and
Puro(t) = [ d¢' P(+'). Simulation results for & and v are §=0.5 = 0.01 and »; =2 £0.2.



438 H. Emmerich, E. Rank/Physica A 216 (1995) 435-444

0.35 . : . -

03 ’\.\ -

0.25 | \ J
¢
o2f | \

23 _
x ! *
2 ,' )
0.5 | \ 4
+
i .‘\
0.1+ .o"n.,\ =
i
|
! %'\
0.05 ¢ °, J
AN
5.
o 1 ] i 1 1 1 1 i 1 &0
) 0.1 %2 02 o4 05 08 07 o8 o8 1

Fig. 2. Fundamental diagram for the NaSc model. For further explanation it is referred to Section 2.

3. Model with hindrances

The new feature of our model is a routine to simulate hindrances on a road. A similar
problem was investigated in [12], where analytic expressions for average velocities and
fluxes in the presence of ‘impurity sites’ were obtained for a two-speed model. Our
approach generalizes the NaSc-model and imposes the following rule before all other
update routines introduced in Section 2. It reads as follows:

for (i = JLENGTH to i= HIND — 1 + SLENGTH) : v:=lv,

with HIND giving the length of a hindrance positioned in the middle of the road. Integer
arithmetics is used and HIND is an integer value with a unit length equaling that of
the automaton cells. The calibration used is that found in [6]: one cell corresponds to
a road segment of length 7.5 m. HIND = 1 therefore denotes a disturbance on a street
segment of length 7.5 m. As a first consequence of this additional rule, vehicles arriving
at the hindrance with v = vy,, will reduce their speed over the first few cells to v = 2.
A vehicle arriving in an already existing jam at the hindrance (i.e. with v = 1), will not
be able to accelerate until the end of the disturbed segment.

To give an idea of the qualitative behaviour of this model Figs. 3 and 4 show the
evolution of two CA’s with HIND =2 and HIND = 3 respectively (p = 0.08). Again
the initial conditions are chosen randomly. The systems length is 4096, however only
1110 cells around the position 2048 (starting point of the hindrance) are displayed.
This length was found to be twice the length necessary to avoid finite size effects
leading to a slightly higher maximum flow for small systems. The time interval shown
is t = [1000, 1800].
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Fig. 3. Space-time plot for the model with a hindrance of length 2 at position 2048. 840 timesteps are shown
beginning at ¢ = 1000. In the x-direction 1110 cells around the hindrance are plotted.
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Fig. 4. Same plot as in Fig. 3, yet with a hindrance of length 3. Note the difference in density before the
hindrance compared to Fig. 3.
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Fig. 5. Fundamental diagram for the model with hindrances of length 0 to 5, 41 and 81 respectively. Note
that for HIND =0 the model (and curve) is equivalent to the NaSc model.

In the middle of the system right before position %LENGTH (and therefore right
before the hindrance) one can find a ‘jammed phase’ . This region is framed by a
phase of free flow. The car density in both regions depends on the value for HIND.
To get a better understanding of this dependency on HIND we plot the fundamental
diagrams for the models with HIND = 0 (thus corresponding exactly to the NaSc
model), HIND =1 to 5 and also HIND =41 and 81 (see Fig. 5). The simulations for
these diagrams were carried out as described in Section 2.

Investigation of this diagram now helps to understand the behaviour of our system in
the following way:

For HIND =0 only one ‘critical’ value of p leading to maximum throughput exists.
For HIND > 0 however there is a whole density interval giving rise to Gmax- This
interval will be denoted by [ pcmin(HIND); pemax(HIND)]. The characteristic shape
of the fundamental diagram is in very good agreement with observations, which were
made by Latour [15], when he investigated two-lane traffic with a stopped car on the
first lane. This correspondence could be expected, as his approach (also being based on
the NaSc model), triggers a velocity reduction on the second lane.

The points pemin(HIND) all belong to the monotonically increasing part of the
fundamental diagram which can be fitted by a line from the origin to the maximum:

q(p) = 3.70p. (13

? The width of the jam (meaning its length in the x-direction of the diagram) will be referred to by WIDTH.



H. Emmerich, E. Rank/Physica A 216 (1995) 435-444 441

0.32 T T T T T T T T

“measurement-points® e
. "fit: f(x)=0.148+0.158/x ----
03 8 .

0.28

0.26

0.24 4

flow

022 | J
021 & 4
018 | & 4

0.16 M“‘“ -

014 L 1 1 L 1 1 i 1
] 10 20 30 40 . 50 60 70 80 80
length of hindrance

Fig. 6. Systems’ maximum flow depending on the length of the hindrance.

To get an expression for the maximum flow depending on HIND we plotted the
corresponding diagram (see Fig. 6). Obtaining —1 as a slope in the double logarithmic
plot, we fitted this curve by 1/HIND, resulting in

1
Gmax(HIND) = (0.148 £ 0.001) + (0.158 £ 0.04) - HIND - (2)
Setting (1) and (2) equal leads to the following HIND dependency for o, min:
1
; = 0.04+004  ——.
Pemin( HIND) 0.0440.0 HIND 3)

In the same way it is possible to fit the monotonously decreasing part of the funda-
mental diagram to obtain the expression

g(p) = 0.134+0.21[e " — p%]. (4)

It should be noted that we are presently not able to give a profound physical meaning
to (4), it is just a (very precise) fit to the decreasing part of the curve.
Equalizing (4) and (2), we obtain*

HIND(pepax) = [1.3- (e Pemes — p2 ) —0.105]7". (5)

In Fig. 7 HIND( p¢max) and HIND(pemim) (which can easily be obtained from (3)
by solving for HIND) are plotted against the density. This gives rise to a phase diagram
in which the ‘free flow phase’ characterised by a behaviour found for p € ]0;0.086]

4 The equation has to be given in this form since it can’t be solved for pemax (HIND) explicitly.
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Fig. 7. Phase diagram: free flow left of dashed line; jammed phase right of solid line; jams induced by
hindrance in transition phase between solid and dashed line.

in the NaSc model is positioned at the very left. At the very right we find a ‘jammed
phase’ as Nagel and Schreckenberg do for p € [0.086; 1.0[. The phase in between the
two graphs shows a behaviour as displayed in Figs. 3 and 4. Quantitatively this can be
described as follows:

- For the interval [ LENGTH — WIDTH; 1LENGTH] the system behaves like a CA
of the NaSc model with density p = p. max (HIND).

- Outside of that interval it displays ‘free flow’ corresponding to a NaSc-CA of p =
Pemin(HIND).

The value for WIDTH can therefore be obtained from the following equation:

LENGTH - p = pemax - WIDTH + (LENGTH — WIDTH) pe.min (6)
|}

WIDTH = LENGTH — .~ Pemin) _

(Pc.max = Pc,min) '

Obviously WIDTH depends on HIND (since pemin and pemax depend on HIND)
and on p. For p = p¢max, WIDTH equals LENGTH meaning that the whole system
behaves like a NaSc-CA for pc uq- This corresponds to the fact that for this value of p
up to p =1 the fundamental diagrams for the NaSc model and the one with HIND # 0
are identical.

To sum up our numerical results it can be stated that even though there is a ‘new’ phase
in the phase diagram of our model its local behaviour can be completely understood in

(7)
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terms of the NaSc model since it can be separated into two regions each corresponding
to a NaSc-CA for a different value of p. Thus also the scaling behaviour of the system
can be referred back to the NaSc model.

4. Relevance for real traffic

The NaSc model was validated by data material from real traffic measurements as de-
scribed in Section 2. Validating our results is a big problem due to the lack of empirical
data for measured throughputs of road segments with hindrances. In that case only the
mean velocity and its variances have been investigated so far [13]. Ref. [14] complains
about this point and strongly advertises to begin those measurements. We want to stress
the need for such investigations.

Nevertheless we want to point out that the qualitative behaviour of our system is plausi-
ble: In the outflow of a jammed region traffic actually does evolve to its free flow limit
as can be observed in everyday traffic. The reason for this is the low density of that
region. Just as well it is plausible that the maximum throughput through a hindrance
sinks with its length.

The question that remains open is whether the critical values we obtained for systems
with hindrances can be directly related to real traffic. If so our model could be a guid-
ance for traffic planners dealing with routing and variable driving instructions. It predicts
the critical value pg i, (HIND) which in case of existing hindrances has to guide shut
down of a road rather than the critical density p. obtained for undisturbed traffic. Further
investigations of the model could be motivated by the idea of a dynamic jam warning
system controlled by on-line density measurements.
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