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Abstract

Computational heat transfer analysis often involves moving fluxes which induce traveling fronts of phase
change coupled to one or more field variables. Examples are the transient simulation of melting, welding or of
additive manufacturing processes, where material changes its state and the controlling fields are temperature
and structural deformation. One of the challenges for a numerical computation of these processes is their
multi-scale nature with a highly localized zone of phase transition which may travel over a large domain of
a body. Here, a transient local adaptation of the approximation, with not only a refinement at the phase
front, but also a de-refinement in regions, where the front has past is of advantage because the de-refinement
can assure a bounded number of degrees of freedom which is independent from the traveling length of the
front.

We present a computational model of this process which involves three novelties: a) a very low number
of degrees of freedom which yet yields a comparatively high accuracy. The number of degrees of freedom is,
additionally, kept practically constant throughout the duration of the simulation. This is achieved by means
of the multi-level hp-finite element method. Its exponential convergence is verified for the first time against
a semi-analytic, three-dimensional transient linear thermal benchmark with a traveling source term which
models a laser beam. b) A hierarchical treatment of the state variables. To this end, the state of the material
is managed on a separate, octree-like grid. This material grid may refine or coarsen independently of the
discretization used for the temperature field. This methodology is verified against an analytic benchmark
of a melting bar computed in three dimensions in which phase changes of the material occur on a rapidly
advancing front. ¢) The combination of these technologies to demonstrate its potential for the computational
modeling of selective laser melting processes. To this end, the computational methodology is extended by
the finite cell method which allows for accurate simulations in an embedded domain setting. This opens
the new modeling possibility that neither a scan vectors no a layer of material needs to conform to the
discretization of the finite element mesh but can form only a fraction within the discretization of the field-
and state variables.
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1. Introduction

The computational analysis of powder bed fusion processes such as e.g. selective laser melting (SLM) is
challenging due to many reasons. The most prominent include:

1. highly localized and moving strong temperature gradients

non-linearities due to temperature dependent coefficients and phase changes of the material
growing and possibly geometrically complex computational domains

large range of scales in both space and time

coupled multi-physics

Or e N

This article presents a methodology for the computational modeling of the temperature evolution in a
powder bed fusion process taking into account the first three issues. While we incorporate the non-linearities
due to temperature dependent coefficients and phase changes of the material using the rather standard latent
heat model first presented in [1], special focus lies on the discretization of the highly localized and moving
strong temperature gradients and on the representation of growing computational domains.

The evolution of temperature fields in space is a diffusion dominated process which can be well resolved
by the finite element method. Many commercial packages are available, of which ABAQUS® and ANSYS® are
two popular choices for applied research. These and other commercial packages provide a wealth of physical
models, but their discretizational technology is mostly limited to linear, at most quadratic finite elements.
Therefore, the resolution of local gradients is limited to h- refinements, i.e. refining the mesh size towards
singularities.

Strong gradients, however, can most efficiently be resolved by hp-finite elements which vary the size of
the element h locally as well as the polynomial degree of the trial/test space p [2, [3]. While hp-fem leads to
efficient discretizations where error estimators are used to drive an adaptive scheme, it also provides excellent
accuracy in cases where the solution characteristic is known a priori. This is the case for the simulation of
powder bed fusion processes because the area of refinement is well defined by the location of the laser spot
where sudden, high temperatures cause phase changes in the material.

Moreover, most simulations of powder bed fusion processes use static discretization schemes, i.e. the
mesh is refined towards the entire laser path and kept fixed at all time-steps. As a consequence, the necessary
number of degrees of freedom is directly proportional to the length of the laser path. However, high gradients
are local to the laser spot itself and not distributed along all of its path. Therefore, the number of degrees
of freedom should be independent of the length of the laser path and at best constant over time. To this
end, transient refinement and de-refinements of the discretization throughout the run time of the simulation
is necessary to keep the refinement local to the current position of the laser. Only recently, discretizations
have appeared that utilize these kind of transient meshes for computational SLM analysis, see e.g. [4, [5, [6]
and references therein. To the authors’ knowledge, all of these contributions exploit h-refinements for low
order polynomials, only. Transient h-refinements for higher order polynomials have not been used in that
context although even transient hp codes do exist along with instructive literature, see e.g. [7, [8 [0l [10] and
the introduction of [I] for a recent overview.

Another important aspect is the treatment of the state variables. While the evolution of temperature
is a diffusive process, the evolution of the material state is not. Solidified material does not diffuse into
regions containing powder. Additionally, material interfaces may not coincide with the boundaries of the
finite elements. For example, material may need to be added in form of powder in a way which does not
necessarily conform to the finite element discretization. In the paper at hand, we propose to provide this
flexibility by discretizing the material coefficients independently of the underlying discretization of the field
variables.

The article is structured as follows: We start by introducing the governing equations in section [2.1
and present its discretized weak from in section We then give a quick introduction into the recently
introduced multi-level hp-finite element method [I1], which provides hp-discretizations on transient meshes.
To evaluate its accuracy, we first present results for a transient but linear, three-dimensional benchmark
resembling a SLM process in section before proceeding to evaluate the scheme against a transient
non-linear benchmark involving phase changes and latent heat in section [2.:4.2]
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We then proceed to combine the multi-level Ap-method with the finite cell method in section[3.1] which was
initially designed to avoid boundary conforming mesh generation for complex domains. We use this concept
to treat state and field variables on different discretizations. Section[3.2]then presents an example computing
the evolving interface of a structure. Herein, two independent and transiently changing discretizations are
used for state and field variables. Their separate treatment combined with the multi-level Ap method allows
for a relatively low number of degrees of freedom which stay almost constant throughout the simulation
process.

2. Thermal analysis with phase changes

This section sets out to describe a new discretizational scheme for thermal analysis with phase changes.
To clear the view, we neglect effects of radiation and mass transfer even though they have physical relevance
in practical examples.

2.1. Governing equations

In this spirit, let us consider a domain, Q C R™ with boundary 92, where n is the number of space
dimensions. The governing nonlinear transient heat conduction equation with phase-change, written in
terms of volumetric enthalpy H = H(T') and temperature T = T'(x) fields, has been investigated by many
researchers. In the sequel, we closely follow the presentation given in [12] which reads:

OH
— =V (kVT)=Q in (1)
ot
where t is the time, k is the thermal conductivity and Q@ is the heat source. Equation is subjected to the
initial condition
T(x,t =0) =Tp(x) in Q. (2)

Dirichlet, Neumann, convection and radiation boundary conditions can be defined on non-overlapping boun-
daries:

T =Ty(x) on dQr, (3)

(kVT) -n=g(x) on 99, (4)
(kVT) -1 = heonv(Too — T(x)) on 98, (5)
(kVT) -n=oe (T* —T(c0)*) on 09, (6)

where Ty, ¢, heony and Ty, are the prescribed temperature, prescribed heat flux, thermal convection coeffi-
cient and ambient temperature, respectively. Further, o is the Stefan-Boltzmann constant and e represents
the emissivity.

The volumetric enthalpy function is defined as

T
HT) = [ pol?) AT+ pLi,e(T), (7)

Tret

where p,c,L,T;of and f,. denote density, specific heat capacity, latent heat, a reference temperature and a
phase-change function, respectively. The function f,. depends on the nature of the process. In an isothermal
phase change, the temperature T, stays constant during the phase change and is defined by a heavyside
step function:

0 T<T,

ﬁan—{l o ®
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see fig. [La for an illustration. For numerical reasons, the function fpc is regularized by a smooth function as
1 2 T, +T,
oT) = 5[ tanh (8 = (7= =57)) +1,
which is depicted in fig. [Lb| for different values of S which controls the smoothing.

fpe fre
1+ — 1+
0 0 \ 1
Tm T T T
(a) Isothermal case (b) Non-isothermal case

Figure 1: Phase change function fpc

A substitution of eq. in eq. leads to the temperature based phase-change model:

oT 0fpe
pca + pL 9t

Equation reduces to the classical transient heat conduction equation, when the latent heat term is
neglected.

—V-(kVT)=Q in Q. (10)

2.2. Discretized weak form

The governing partial differential eq. subjected to the initial condition given by eq. and the
Dirichlet, Neumann and convection boundary conditions given in egs. to , respectively is now discre-
tized in time and space. For the spatial discretization, the Bubnov-Galerkin finite element method is ideally
suited due to the mainly diffusive nature of the described process. To this end, the set V of admissible
solutions T and a set Vy of admissible test functions 1 is defined as

V={ve H(Q), v="Tyx,t) on 07} and Vy={ve H(Q), v=0 on 9Qr}, (11)
where H! is the Hilbert space. The weak form of egs. (2)) to then reads:

Find T €V, such that
oT O fpe
wpc—t dQ+ [ ¥pL 5t dQ+ [ VY- (kVT)dQ = [ vQdQ + Yq dl' + Y h(Te —T)dT.
Q Q Q Q o0 o0

0

(12)
In the framework of the Bubnov-Galerkin finite element method, solution field and test functions are
approximated by the same shape functions N; as follows:

n

T(xt) = Ta(x,t) = D Nix)Ti(t),  o(x,0) = dn(x, 1) = D Ni(x)ei(t), (13)
i=1

i=1



where T; and v; are the unknown coefficients. Substituting the approximations eq. into the weak form
eq. yields the following semi-discrete equilibrium equation:

CT+L+KT=F

Cij = /pCNiNj dQ

Q
Li= / pLN; agzc dQ
Q (14)
Q2 Q.

Fi:/NiQdQJr/Nz-quqL/hNiToodF
Q 9, Q.

where C is the capacitance matrix, K is the conductivity matrix, L is the latent heat vector, F is the load
vector and T is the temperature coefficient vector. The residual vector R for the transient nonlinear analysis
is obtained by using the backward Euler time integration scheme for the terms L and T in eq. :

Tn+1 - Tn Ln+1 —L

n !
Rn+1 = Fn+1 - Cn+1 At - At - Kn+1Tn+1 =0. (15)

The subscripts n and n + 1 represent evaluations at time ¢ and t + At, respectively. In order to solve this
nonlinear equation, we use an iterative incremental scheme, where the current temperature vector is:

Tt =T, + AT (16)
2+1ATi = iz-&-l' (17)

Equation shows the incremental system to be solved, where J is the tangent Jacobian matrix which is
defined as

) R i . Ct L"i
J ., =—-——| =K 4ol Zondl (18)
Heoor, AL At

The latent heat contribution L’ of the Jacobian matrix J is:

L, = /pLLaf;cNiNj dQ, (19)
Q

where we approximate the temperature derivative of the function fp. as suggested in [12]:

0 fpe
or

C L hpelTian) — fpe(T)
Ti—Tu

(20)
n+1

2.3. Multi-level hp-FEM: Discretization of the primal unknowns

It lies in the nature of the SLM process to induce phase change locally by application of a highly focused
laser beam. This heat flux is discretized in F and the induces high temperatures locally which diffuse
rapidly into the domain. The resulting high but non-singular gradients are best captured by hp finite
element schemes.

Implementations of hp-finite elements are widely available in the scientific community, see e.g. [3] I3}
141, [15] [T6]. Research in the field of isogeometric analysis has further amplified the available code-basis, see
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e.g. [I7). However, the situation is less comfortable in cases where dynamic hp-discretizations are necessary
in three dimensions. This is due to the fact that handling degrees of freedom on changing mesh topologies
proves to be difficult in 3D. The recently introduced multi-level Ap-method aims at alleviating this burden.
An en-detail description of the method is given in [I8] [I1 [19] along with a review of other, related methods.

Classic hp-approaches replace finite elements with refined elements and constrain hanging nodes, edges
and faces to re-establish a C%-compatible, global trial and test space. The multi-level hp-method takes a
completely different approach. Its underlying idea is to retain coarse elements in the mesh. The refinement
is then constructed hierarchically such that global C%-continuity and linear independence is maintained by
construction. This renders post-constraining unnecessary. The principle idea is depicted in fig. ) in one
dimension. Compatibility is ensured by applying homogeneous boundary conditions on all boundaries of
the overlay mesh. In one dimension this translates to deactivating all nodal degrees of freedom on the
overlay meshes which correspond to the boundary of the overlay. Linear independence is guaranteed by
deactivating the high-order modes on the lower levels. Thereby, high-order shape functions are h-refined
as well and finite element spaces are constructed which are very close those generated by classical Ap-finite
element methods [20]. The simple rule set of activating and de-activating nodal and edge modes directly
translates to two- and three-dimensions as depicted in fig. ) and c) if face and internal modes are accounted
for likewise.

2.4. Examples

This section addresses the first two computational challenges stated in the introductory section To
this end we evaluate the accuracy of the multi-level hp-method by means of a comparison to two semi-
analytical benchmarks, which resemble SLM-typical problems: a moving laser source in linear thermodyn-
amics in section and a variant of Stefan’s problem involving phase changes in section [2.4.2

2.4.1. Linear thermal analysis

It was already demonstrated in [II] that strong gradients in a stress field can be captured accurately on
moving discretizations. The paper at hand investigates the (parabolic) heat equation commonly used for
modelling SLM processes. We consider the following simplified form of eq.

pcaa—f -V (kVT)=¢q in Q. (21)

where ¢ is the Gaussian surface distributed heat source:.

63 inf 2 1 2 — ot 2
q(x, z,t) = lim V3Q exp (_3y> dy x EeXp {_32 _ 3%

2 2 2
b—>07‘r\/7?a;) 0 1 b / e (22)
0N PP Gt
Ta ¢ a? c?

which is also commonly referred to as an elliptical disk heat source, see e.g [2I]. Its distribution parameters
a and c are referred to as its radii and the maximum heat power is denoted by @. The center of the heat
source travels with a constant speed v along the path A—B on the upper boundary of the semi-infinite body
given in fig. It is depicted in fig. along with its local coordinate system.

The analytical solution of this transient temperature field was first introduced by [21]. Herein, the space
and time dependent temperature T'(x, z,¢) is given as the initial temperature Tj plus a time integral from
the start of the process at t = 0 to the time of interest ¢:

2
t exXp _3ﬁ
Tlao2,t) = Ty + 22 Q) (pho) x |ty X 2Adt, (23)
/T 0 V12k(t — ) + a2 \/12k(t — t')



® Active Node — Active Edge

Inactive node due to

N © linear independence
k=2 @3 p=4 o Inactive node due to
. :l : compatibility

Inactive edge due to
linear indepedence

Inactive edge due to
compatibility
Active Face

Inactive face due to
linear independence

Inactive face due to
compatibility

T —

(b) Two-dimensional case (¢) Three-dimensional case

Figure 2: Conceptual idea of the multi-level hp-method following [I8], 11} [19]

whereby the abbreviation A

z—vt')?
exp |:_3 12)2(t7t’))+62 :|

12k(t —t') + ¢

A=Az t,t) = (24)
and k = k/(ph.) is the thermal diffusivity. The parameters of the setup are chosen in the range of a typical
SLM scanning process and listed in table

Radiation-convection boundary conditions are imposed on the bottom and side surfaces by setting the
environmental temperature to T.,, = 0°C and the convection coefficient to heony = 0.0 [W/m?2°C]. This
leads to an approximation of the temperature at the surfaces cutting the considered block out of the half-
domain which would otherwise be given by eq. . However, these cut-off surfaces are far enough away for
this approximation to have any notable effect on the temperature distribution along the path A—B. The
time domain was discretized by 500 hundred time steps with At = 4 [usec].

The base mesh of the multi-level hp-discretization is depicted in fig. [3a] and consists of 2 X 2 x 2 elements.
This base mesh is refined by successively superposing finer overlay elements that halve the size of their
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(a) Geometric dimensions in mm and initial mesh (b) moving heat source with characteristic parameters
of 2 x 2 x 2 hexahedral elements

Figure 3: Problem Setup

Heat Power (Q) | 50.83 W

Laser speed (v) | 0.5 m/s
Half radius a | 0.1 mm
Half radius ¢ | 0.15 mm

Specific heat (h.) | 600 J/(kg°C)
Density (p) | 7820 kg/m?
Heat Conductivity (k) | 29 W/(m°C)

Table 1: Material and load parameters for the benchmark defined in fig.

parent. Figure [ gives an impression of the resulting mesh for five overlays. A possible measure of resolution
is to relate the numbers of elements per twice the smallest distribution parameter of ¢ defined in eq. , here
a = 0.1[mm]. For the base mesh, this ratio is 0.2[mm]/2.5[mm]|=0.08 which is then doubled by each level of
refinement i.e. levels one to five lead to: 0.16, 0.32, 0.64, 1.28, 2.56 elements per 2a. The refinement is not
carried out uniformly but towards a bounding box which defines the zone of maximum h refinements. It is
initially located at the center of the laser beam, has the initial dimensions 0.125[mm]/0.0625[mm)]/0.03[mm],
and is oriented along the global x/y/z-axis. During the scanning process, the rear face of the bounding box
is kept fixed until it has an elongation of 0.7[mm]. The size of the bounding box then stays fixed and the
bounding box follows the laser path with constant dimensions until its end.

The results for the temperature are depicted for different time-steps in fig. While the colors in the
picture correspond to the refinement depth, the discretization is warped in the global z-direction using the
computed temperature field. The picture series demonstrates the dynamic change of the discretization over
time, which allows the refinement zone to stay local to the moving laser spot.

Figure [6a] depicts the spatial solution of the temperature along the laser path, i.e. the cutline between
point A and B in fig. ] for different polynomial degrees. Figure [6D] records the temperature history of a
material point located at the coordinates x=0.25, y=0.0, z=0.1. It can clearly be seen how increasing the
polynomial degree p of the approximation helps in increasing the solution accuracy.

To obtain a better insight into the convergence behavior, p-extensions (i.e. sequence of computations
with increasing polynomial degrees) were carried out on different h-refinements. To this end, the analytical
solution given by eq. was computed using the function integral in matlab®. This function performs
an adaptive quadrature with a relative tolerance of le — 6 [22]. The computation was carried out at 1000
equidistant points along the laser path between point A and Bﬂ and its deviation from the numerical
approximation obtained by the multi-level Ap-method served as an error measure in the sense of a discrete-
Lo norm:

1000
2i=0 Lsani — Ti)?

1000 2
Zj:O Tsan,j

lell,, = x 100. (25)

lin fig.



AnsatzOrder

Figure 4: Local 3D multi-level hp mesh

Herein T, represents the semi-analytical solution of eq. , and T; is the temperature obtained by the
multi-level hp-method at the i;, point.

The convergence plots are presented in two forms for the same data. Figure [7a] gives the number of
degrees of freedom versus the discrete, relative Ly error computed by eq. whereby both axis possess
logarithmic scale. Figure[7h]displays the same data, but the abscissa is scaled by the third root of the degrees
of freedom. The blue line with the filled dots labeled ‘uniform h, p=1° represents the accuracy obtained by
discretizing the domain uniformly starting with a mesh of size 2 x 2 x 2, then 4 x 4 x 4, then 8 x 8 x 8 up
to 32 x 32 x 32 elements. The relative error does not fall below 27% at 35,937 degrees of freedom for this
strategy. This demonstrates how poorly a uniform refinement converges. All other curves are obtained by
performing a multi-level hp-refinement towards the bounding box as described above. Consider the blue line
with the blue circles labeled ”1 ml, p=1...10”. The mesh here consists of the base mesh plus one refinement.
For each dot, the mesh stays fixed and the polynomial degree is increased from one to ten anlong the line.
The error now drops to 6% for p = 10, and its decrease is exponential. This is indicated by the straight line
in fig. [7B] It is noteworthy that each added level of h-refinement upon which a p-extension is carried out
uniformly leads to better results with less degrees of freedom only until level four. Level five is worse again.
Here, too many degrees of freedom are spent in parts of the domain where the error is already low. This
may be avoided by use of an error estimator. In any case, a very good discretization is obtained using four
refinements with a polynomial degree of four. Here, only 3857 degrees of freedom are needed to obtain an
error of 1.3%. At this point, the results delivered by the multi-level hp-strategy are approximately twenty
times more accurate at ten times less the degrees of freedom than a bold h-refined strategy for this setup.

2.4.2. Melting bar

In this section, we evaluate the numerical approximation to the isothermal phase change model that
is introduced in section We are especially interested in the methods ability to accurately resolve the
interface between liquid and solid parts of the domain. Unfortunately, exact solutions to eq. are only
available for very few idealized situations in a dimensionally reduced setting.

We consider the two-phase problem of a one-dimensional semi-infinite bar. The bar is initially solid with
a constant temperature T;. The boundary condition at = 0 is then suddenly changed to a stationary
temperature T; which is larger than the melting temperature T;,. The analytical solution was originally
described in [23] and is known in the literature as Neumanns’s method, see e.g. [24] 25].

The sudden change of the temperature from T to T; causes the bar to melt. The position of the interface
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(a) Time step 50 (b) Time step 150

(¢) Time step 300 (d) Time step 500

Figure 5: Temperature solution at different time steps and adapted refinements depth

between melt and solid is given by:
X(t) =22yt (26)

where t is the time and «; is the diffusivity of the material in its liquid state. The constant A in equation
is computed by solving the following non-linear equation

St; 3 Stey/as -
exp(A2)erf(\) Voq exp(ayA? Jag)erfe(A/ag /) AV @7)

where St; and St are the Stefan number of liquid and solid phases respectively. They can be computed as

follows:
Cl(ﬂ - Tm) Cs(Tm - Ts)

L ’ L
In eq. , L is the latent heat of fusion, and C; and C; are the heat capacity of the liquid and solid phases,

Sty = Sty = (28)
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Figure 6: Temperature solution for 4 multi-level refinements for polynomial orders p = 1...4.

respectively. The analytical temperature distribution over the semi-infinite slab is given by

erf(\)
T(x,t) = . (29)
Tt (T, — 1) S@/ 2Vt e v

*erfe(A/ay /o)

Figure [ illustrates the dimensions of the bar which is used for validation of the numerical scheme. The
bar consists of pure Titanium and is assumed to have the thermo-physical properties provided in table
These lead to the constant A = 0.388150542167233, which is computed from eq. . On the face at x = 0.1
the analytical solution is imposed as a constant Dirichlet boundary condition to emulate the semi-infinite
domain. The simulation was carried out on a base mesh with 10 finite elements of order p = 3 with four
multi-level Ap-refinements. The time domain was discretized by a backward Euler scheme with a time step
of dt = 1[s].

Figure shows the corresponding numerical solution of the temperature along the z-direction of the
bar at different time steps together with the analytical solution. The kink in the solution at the melting
temperature T}, is clearly visible. It stems from the latent heat contribution represented by L, in the semi-
discrete weak form given in eq. . The lens zoom depicts how close the numerical solution resembles its
analytic counterpart. Figure depicts the evolution of the temperature at the point = 0.01[m] which is
very close to the Dirichlet interface and therefore difficult to catch. The kink at T}, is also clearly visible
and well captured by the numerical scheme.

Ti— (1 - Ty SE2VED e x
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Figure 7: Convergence in discrete La-norm starting from a 2 X 2 x 2 base mesh and hierarchically refining in h 2, 3 or 4 times
(used abbreviations: ml = multi-level hp refinement)

T 1670 °C
T, = 2000° T 2000 °C
Im T, 1500 °C
‘3 D 4.51 x 10° kg/m®

k‘m ¢ = cs 520 J/(m? °C)

0.01 m ki=ks | 16 W/(m °C)

0.01 m L 325 x 103 J /kg

Figure 8: Problem setup of the melting bar Table 2: Thermo-physical properties

for Titanium

3. Modelling Selective Laser Melting

Goal of this section is to present a method that discretizes dynamically growing structures and in which
refinements are only carried out where necessary. To this end, we first introduce the finite cell method,
an embedded domain method for high-order finite elements, before moving on to a show-case example
demonstrating the features of this approach.

3.1. Finite Cell Method

The main objective of the finite cell method is to avoid boundary conforming meshing of geometrically
complex physical domains. To this end, a geometrically complex domain §2,, is extended by a fictitious
domain ;. such that the resulting domain Q has a simple shape and can thus be meshed easily. (see fig.

and [26], 27].
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Figure 9: Melting bar example: evolution of temperature in time and space
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+ = —
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Figure 10: Concept of Finite Cell Method

In the simplest case, the mesh is a grid whose entities are called cells, henceforth the name finite cell
method. It is on these cells where the shape functions are spanned. The original geometry of the domain is
recovered at integration level by use of the following indicator function

Oé:{ 1 VXEQphy

1079 Vx € Qi (30)

where, ideally ¢ — oo, although in practical applications it is usually sufficient to choose g = 4. The
equality of a conforming to a non-conforming Galerkin formulation can easily be shown. For example for
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Figure 11: Setup of the process model

the volumetric term of K;; given in eq. it holds:

Kij = / UN; - (EVN;) dQphy

Qphy
~ / UN; - (1kVN;) dQppny + / UN; - (1079 kVN;) dQier (31)
Qphy Qfict

= /vzvi (akVN;) dQ.
Q

All other terms involving volume integrals in eq. can be treated likewise. The convergence of this
scheme is mathematically proven in [28] where it is additionally shown that the influence of a non-zero « is
proportional to a (controllable) modeling error.

The discontinuity of a necessitates adaptive integration schemes, see e.g. [29] [30] for a recent overview
of possible schemes. The simplest (although not most efficient) choice is a composed integration by means
of an octree. This variant will be used to compute the examples in this section.

3.2. Multi-level hp method and the finite cell method at work

We now consider the computational modeling of a SLM process as depicted in fig. The computational
domain consists of a solid base plate upon which one powder layer resides. A laser then solidifies the powder
along the path specified in the illustration. A new layer of powder is added and the process repeats until
10 layers are completed. Each layer has a thickness of 50[um]. The three phases powder, solid and melt
are assigned the temperature dependent material coefficients given in fig. The dependency of the heat
capacity is assumed to be the same for all three phases, while the conductivity is assigned individually
to each phase. The initial temperature of deposited material and base plate is T = 200°C. Radiation
and convection boundary conditions were applied at the top surface using an emissivity of ¢ = 0.8 and a
convection coefficient of heopny = 5.7 [W/m2°C]. Homogeneous Neumann boundary conditions are applied
elsewhere.
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Figure 12: Temperature dependent material properties

The discretizational treatment of the process itself is best explained by considering a time-step of the
simulation process. Two grids are used. The grid depicted in fig. describes the material in a voxel-like
fashion, while the other grid depicted in fig. spans the high-order shape functions used for finite cell
discretization of the temperature.

On the material side, four types of domains are to be distinguished: air, powder, solid/liquid and the
base-plate. The distinction between air and powder is modeled by using the a defined by the finite-cell
method (see . This interface is explicitly defined as a geometric input. The change between powder and
melt, however, emerges as a result of the power input by the laser beam. This locally emerging change in
material properties is modeled similar to the bar example presented in section The difference is that
once powder has changed to melt it cannot change back to powder; it can only vary between melt and solid
thereafter.

The grid which spans the basis functions discretizing the temperature field depicted in Figure [[3D]initially
consists of 8x8x5 base finite cells. It is refined by recursively bisecting the elements three times towards a
(moving) bounding box in the close proximity of the impact point of the laser using the multi-level Ap-method
discussed in The smallest elements have an element size of half of the layer thickness in z-direction
and 62.5[umlin in-plain direction. This corresponds to 2.4 finite elements of order p = 3 at the impact
point of the laser which. Under the assumption that the accuracy scales with the number of elements within
the impact point of the laser and the chosen polynomial degree as studied in section [2.4.1] it is possible to
obtain a rough estimate on the accuracy of the computation. In that case the same resolution is obtained
for fife multi-level refinements which led to an accuracy of approx. 4[%] at p = 3 (see fig. [7a] black line with
pentagon symbols). This is considered to be in the range of other modeling errors which are even more
difficult to track but naturally occur in the modeling of powder bed fusion processes.

The base level of the grid describing the material coefficients is geometrically and topologically congruent
to the one used for the temperature discretization but both grids refine and de-refine independently of one
another. The maximum refinement of the grid discretizing the state variables is one level finer than the
thermal counterpart. It refines towards sudden changes in the material coefficients. This grid is used for a
partitioned integration of the bilinear forms. The emerging structure (logged in that grid) is depicted along
with the temperature in all physical domains at the representative time steps 220, 1000 and 1670 in figs. [T4a]
to [14c] respectively.

At this point it is interesting to note the difference to other approaches common in the modelling
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Figure 13: Discretization of material and temperature by means of two grids

of powder bed fusion processes or metal deposition: the quiet element method and the inactive element
method. A comprehensive overview of both strategies is found e.g. in [31], [32] B3] including a discussion of
each methods’ advantages and disadvantages. In essence, the inactive element method activates elements
in the sense of including them in the global stiffness matrix only if material was deposited in the region
covered by the element. In the quiet element method, finite elements are active throughout all time steps
of the simulation but are assigned small conductivities and capacities if no material is present. In this
sense, the presented methodology is more related to the quite element method because regions with no
material are assigned low material properties. The difference lies in the fact that by using the finite cell
method sub-regions within finite cells contain material while other regions of the cell may still be void. In
the presented example, in the region of maximum refinement each layer consists of four layers of voxels.
In turn, four layers are themselves contained in one finite cell at base level. One finite cell, thus, contains
up to 16 voxels in z-direction. These voxels don’t contribute to the number of degrees of freedom to be
solved for. Nevertheless, they increase the resolution of the material properties provided that high-order
shape functions are used to discretize the cells. As a consequence, a comparatively low number of degrees of
freedom suffices for an accurate description of the field variables, e.g. the transient temperatures on evolving
domains. The large gradients in the solution are captured accurately by using the multi-level hp-method
and the necessary refinements can be kept local to the impact region of the laser beam. Figure [[4d] depicts
the number of degrees of freedom for each time step. It varies between six- and eight thousand and increases
only marginally throughout the process. The periodic spikes occur at time steps where the laser jumps from
one scan path to another while the large plateaus show the change from one layer to another. The complete
computation took approximately 10 hours for 2000 time steps on a standard desktop computer whereby only
45 minutes cpu time were actually used for solving the resulting non-linear equation system. This clearly
indicates that there is room for optimizations.

4. Conclusions

The article at hand presents a computational framework for the simulation of powder bed fusion processes.
The scheme is motivated by the fact that the very strong temperature gradients introduced locally by the
laser beam quickly diffuse away while the state of the material does not diffuse. Therefore, the discretization
of the temperature field is separated from the discretization of the material. These two separate meshes can
then refine and coarsen independently of each other. The computational methodology is verified against
two (semi-)analytical benchmarks. It is demonstrated that the combination of local refinements and high
polynomial degree of the discretizations leads to higher accuracies then only decreasing the mesh size.

The closing example serves to demonstrate the discretizational flexibility of the method for the simulation
of the temperature evolution and the phase changes involved in SLM processes. Herein, the material layers
do not conform to the discretization of the temperature field and the number of the degrees of freedom are
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Figure 14: Temperature field and its discretization with emerging structure at different time steps and number of degrees of
freedom for all time steps throughout the process
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decoupled from the length of the laser scan path. This flexibility in the discretization allows for a practically
constant number of degrees of freedom throughout the entire the computation.

Future research will be directed into extending the methodology to include multi-physical capabilities

such as the computation of thermo-elasto-plastic phenomena in multi-layer processes.
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