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Abstract A fast and simple grid generation can be achieved
by non-standard discretization methods where the mesh does
not conform to the boundary or the internal interfaces of the
problem. However, this simplification leads to discontinu-
ous integrands for intersected elements and, therefore, stan-
dard quadrature rules do not perform well anymore. Conse-
quently, special methods are required for the numerical in-
tegration. To this end, we present two approaches to obtain
quadrature rules for arbitrary domains. The first approach
is based on an extension of the moment fitting method com-
bined with an optimization strategy for the position and weights
of the quadrature points. In the second approach, we apply
the smart octree, which generates curved sub-cells for the
integration mesh. To demonstrate the performance of the
proposed methods, we consider several numerical examples,
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showing that the methods lead to efficient quadrature rules,
resulting in less integration points and in high accuracy.

1 Introduction

The mesh generation process of the classical finite element
method (FEM) can become labor-intensive or practically im-
possible when facing problems that exhibit a complex geom-
etry or consist of geometrical features such as voids, mate-
rial inclusions, or cracks. In the past few decades, novel dis-
cretization methods have therefore been introduced to sim-
plify the mesh generation. Such methods are, for example,
the eXtended finite element method (XFEM) [1–4] and the
generalized finite element method (GFEM) [5–7] which are
based on the partition of unit method (PUM) [8, 9], the fic-
titious domain technique [10–13], or the finite cell method
(FCM) [14–16] which combines the fictitious domain ap-
proach with high-order finite elements. The basic idea of
these methods is to separate the approximation of the pri-
mary variables from the approximation of the geometry. In
doing so, the mesh is not restricted to coincide with the
boundary or internal interfaces of the problem under con-
sideration, which is why it allows for a fast and simple mesh
generation using structured meshes or Cartesian grids, for
instance. However, this simplification in the mesh genera-
tion comes at the expense of a more sophisticated applica-
tion of boundary conditions [17–20], a bad conditioning of
the equation system [21–25], the necessity of a local enrich-
ment strategy [26–30], and a more elaborate numerical in-
tegration method to handle the discontinuous integrands for
elements that are intersected by the boundary or by internal
interfaces [14–16, 31–34].

In this paper, we focus on the numerical integration of
arbitrarily broken elements. To distinguish these elements –
which do not have to conform to the boundary or the internal
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interfaces – from classical finite elements, will hereinafter
denote them as cells. In the context of structural mechanics,
we are interested in the computation of the integrals related
to the mass and stiffness matrix as well as the body force
vector. Thereby, standard quadrature rules are applied for
non-broken cells which are not intersected by the boundary
or by internal interfaces. These quadrature rules, however,
do not perform well for broken cells which face discontinu-
ous integrals of the following form∫

ΩC

α(x) f (x)dΩ . (1)

In Eq. (1), ΩC denotes the cell domain, f (x) is a continuous
and smooth function defined over ΩC, and α(x) is a function
introducing a discontinuity. In the framework of the XFEM,
α(x) defines the Heaviside function – and, in the context
of the FCM, α(x) is the indicator function which is one for
points that are located within the physical domain, and zero
otherwise.

Since standard quadrature rules do not perform well for
the numerical integration of discontinuous functions adap-
tive integration schemes are required. To this end, one way
to compute these integrals is to replace the discontinuous
integrand of the cell by an equivalent polynomial and then
to perform a standard Gauss quadrature. This idea has been
proposed by Ventura and Benvenuti in [35, 36] and has been
extended for the application to the FCM by Abedian et al.
[37]. Another commonly used scheme is to split the integral
in Eq. (1) into two parts∫

ΩC

α(x) f (x)dΩ =
∫

ΩA

α(x) f (x)dΩ+
∫

ΩB

α(x) f (x)dΩ

(2)

whereby the integrals on the right-hand side consist of func-
tions that are smooth and continuous over the correspond-
ing integration sub-domains ΩA and ΩB, respectively. Hav-
ing the discontinuous integral subdivided into two contin-
uous integrals, however, does not ensure a straightforward
application of the standard quadrature rules since the sub-
domains ΩA and ΩB exhibit an arbitrary topology. To per-
form the computation of the integrals over these particu-
lar sub-domains, a local integration mesh is thus generally
required, consisting of elements in which standard quadra-
ture rules can be applied [2–4, 7, 15, 32–34, 37–45]. In the
course of this, broken cells are subdivided into sub-cells, fol-
lowed by computing the integrals over these particular sub-
domains. Since the mesh is only needed for integration pur-
poses, the adjacent cells do not need to conform, and the
mesh may thus obtain hanging nodes. Consequently, the ac-
curacy of the integration methods based on local meshes
is related to the approximation of the corresponding inte-
gration domain. For this reason, there exist different proce-
dures to generate these meshes, such as methods based on a

quadtree or an octree subdivision [15, 32, 34, 40], low-order
tesselation using triangles or tetrahedrons [3, 4, 46, 47], or
applying high-order sub-cells [7, 38, 44, 45, 48–50].

The adaptive integration schemes based on spacetrees
subdividing broken cells by a quadtree (in 2D) or octree in
(in 3D) have the advantage that they are robust, fully au-
tomatic, and allow to control the error in integration. More-
over, their implementation is very simple. The disadvantage,
on the other hand, is that – for a quadrature rule of high ac-
curacy – a fine sub-cell mesh is usually required, resulting
in a high number of integration points. This high number of
integration points, in turn, renders the numerical integration
expensive.

To overcome this problem, we present two methods. In
the first method, we extend the method suggested in [51]
where individual quadrature rules are generated for every
broken cell by solving the moment fitting equations [52–56].
For the computation of the moments, the integration domain
is represented by a triangulated surface mesh and, thus, re-
sults in a high accuracy of its geometry description when us-
ing fine meshes. Solving the moment fitting equation system
is not an easy task since it is nonlinear in terms of the po-
sition of the integration points. For this reason, the method
developed in [51] follows the idea of fixing the position of
the integration points a priori, as suggested by Mousavi et
al. [52]. In [51, 56] an adaptive point distribution scheme
has been implemented to this end, subdividing the broken
cell uniformly into sub-cells before the required integration
points are distributed randomly in every sub-cell that is com-
pletely located within the integration domain. In doing so,
the nonlinear moment fitting equation system turns into a
linear system which is then solved by applying a linear least-
squares fit. The advantage of this method is that the number
of integration points is reduced significantly as compared
to the adaptive integration based on an octree subdivision.
Moreover, the adaptive point distribution scheme ensures
that all integration points are located within the integration
domain – which corresponds to the physical domain in the
context of the FCM. The disadvantage, on the other hand, is
that the integration points provided by the adaptive distribu-
tion scheme may lead to a bad conditioning of the moment
fitting equation system and, thus, may decrease the accuracy
of the generated quadrature rule. This problem is even more
pronounced for high-order quadrature rules. In this contribu-
tion, we present two approaches to overcome this problem
by optimizing the accuracy of the moment fitting quadrature
rules where the integration points have to be located within
the domain of the broken cell but are not restricted to the
integration domain. In the context of the FCM, this means
that the points may be located within the physical as well
as the fictitious domain of a broken cell. In the first variant
of the moment fitting method, we define the position of the
integration points a priori. In doing so, we take advantage
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of the position of the Gauss-Legendre points, which lead to
a good conditioning of the moment fitting equation system
and, thus, result in quadrature rules of high accuracy. In the
second variant of the moment fitting, we generate quadrature
rules by solving an appropriate optimization problem related
to the nonlinear moment fitting equations. First investiga-
tions in this regard have been presented in [57] where an op-
timization problem of the moment fitting method is solved
drawing on the procedure proposed by Ryu and Boyd [58].
Although efficient quadrature rules are obtained, resulting
in a low number of integration points, solving the optimiza-
tion problem becomes expensive for high-order quadrature
rules. For this reason, in this paper, we formulate an alterna-
tive optimization problem which is based on the minimiza-
tion of the residual of the moment fitting equation system.
In doing so, the moment fitting results in efficient quadra-
ture rules, yielding optimized points and weights where the
points have to be located within the cell but are not restricted
to the integration domain.

In the second method, we perform the numerical inte-
gration based on the smart octree method presented in [45].
The smart octree subdivides the integration domain into sub-
domains with smooth integrands (see Eq. (2)). Similar to
the classical octree, it subdivides the cut cell into eight oc-
tants, but uses node-relocation and high-order polynomials
for integration sub-cells. It thereby captures the most primi-
tive topological cases directly at the first level of refinement
and uses recursion only as a fallback option, until such a
primitive case appears. The smart octree thereby inherits the
positive features of the standard octree approach, such as ro-
bustness and minimal topological complexity. At the same
time, it can approximate complex geometries with high ac-
curacy. Due to this fact, the smart octree does, in general,
not require many levels of subdivision. This results in a very
low number of integration points where all points are located
within the integration domain. Thus, the integration can be
carried out with high accuracy entirely on the physical do-
main in the context of the FCM.

The paper is structured as follows: At first, the individual
numerical integration methods are introduced and explained
in detail in Sect. 2. Next, in Sect. 3, we demonstrate the ef-
ficiency and accuracy of the proposed integration methods
considering different numerical examples. Here, we start off
by investigating the numerical integration of polynomials
on different domains before demonstrating how they are ap-
plied to the finite cell method. Finally, Sect. 4 concludes the
paper giving a summary and an outlook for future works.

2 Numerical integration

2.1 Moment fitting

This section gives a brief overview of the moment fitting
method. For more detailed information, the reader is referred
to [53, 54, 59, 60].

The idea of the moment fitting is to generate a quadrature
rule by solving the moment fitting equations

n

∑
i=1

f j(xi)wi =
∫

ΩA

f j(x)dΩ , j = 1, ...,m (3)

where xi are the n integration points, wi are the n correspond-
ing weights, f j(x) are the m independent basis functions,
and ΩA the domain of interest. In matrix notation the mo-
ment fitting equations reads

f1(x1) . . . f1(xn)
...

. . .
...

fm(x1) . . . fm(xn)




w1
...

wn

=


∫

ΩA
f1(x)dΩ

...∫
ΩA

fm(x)dΩ

 , (4)

and can be summarized as follows

Aw = b (5)

where A defines the coefficient matrix composed of the func-
tion evaluations of the basis at the integration points, w is the
vector of the weights, and b is the vector of the individual
integrals of the basis functions over the integration domain
ΩA. The integrals of b are also denoted as moments. Thus, to
conclude, the moment fitting can be understood as a general
approach to set up a quadrature rule for an arbitrary domain
ΩA.

Since we are interested in the integration of polynomials,
we use the orthogonal Legendre polynomials for the basis,
which span the three-dimensional tensor product space

F =
{

Lr(ξ )Ls(η)Lt(ζ ) , r,s, t = 0, ..., pq
}

. (6)

In Eq. (6), pq defines the order of the basis functions that
form the integrands of the right-hand side in Eq. (3) and (4).
Different methods can be applied to compute these integrals.
On the one hand, the volume integrals can be computed by
applying special quadrature rules that suit the topology of
the broken cell, as presented in [40], or by using space trees
like the standard octree [15] or the smart octree [45], for
instance. On the other hand, the volume integrals can be
transformed into surface integrals utilizing the divergence
theorem, as shown in [51]. In doing so, the integrals of the
right-hand side read∫

ΩA

f j (x) dΩ =
∫

ΩA

divg j (x) dΩ =
∫

ΓA

g j (x) ·n(x) dΓ (7)
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where ΓA defines the surface of the integration domain ΩA
and n(x) its normal vector, which points in outward direc-
tion. Further, the vector g j(x) defines the anti-derivatives
which are computed according to [54] as

g j(x) =
1
3


∫

f j (x) dx∫
f j (x) dy∫
f j (x) dz

 . (8)

In order to perform the integration, a parameterization of the
surface is required. A rather simple approach to do so is to
triangulate the surface and to apply a Gaussian quadrature
on the triangles of the discretized surface [15].

Solving the moment fitting equation system is not straight-
forward since it is linear in the weights and nonlinear in the
position of the integration points. In [57], a nonlinear opti-
mization approach following the method suggested by Ryu
et al. [58] has been applied to generate efficient quadrature
rules using optimized integration points. Although it could
be shown that this method is very efficient – using less in-
tegration points than the number of the basis functions –
it proved to become expensive when computing quadrature
rules of higher order. A remedy to solve the nonlinear mo-
ment fitting equations is to follow the approach presented
in [51, 53, 54, 56, 59]. To this end, the position of the inte-
gration points is selected in advance, thus transforming the
nonlinear system into a linear one. In doing so, the num-
ber of the integration points is chosen to be equal or higher
than the number of the basis functions (n≥ m), and the lin-
ear equation system is solved using a linear least-squares fit.
In [51, 56], the position of the points is selected by apply-
ing an adaptive point distribution scheme where the bro-
ken cells are uniformly subdivided. Then, the integration
points are distributed randomly over those sub-cells that are
completely located within the physical domain. The advan-
tage of this distribution scheme is that all points are located
within the physical domain. The disadvantage, on the other
hand, is that the moment fitting equation system becomes
ill-conditioned for high-order quadrature rules, resulting in
a lower accuracy.

In [51], it is shown that the standard weights of the Gauss-
Legendre quadrature can be recovered by applying the mo-
ment fitting to a non-broken cell – a cell that is not cut by
the physical boundary – when selecting the position of the
Gaussian points. In doing so, even the weights of the high-
order quadrature rules can be computed within machine pre-
cision. Consequently, using the Gaussian points is a good
choice also for broken cells because the left-hand side in
Eq. (3) and (4) will be the same as for the non-broken cell.
This, in turn, means that the condition number of the sys-
tem remains the same as well, thus ensuring high accuracy
for the high-order quadrature rules. Moreover, applying the
standard Gaussian points to the moment fitting equation sys-

tem transforms it into a linear square system so that the num-
ber of the integrations points equals the number of the basis
function (n = m). Although this implies allowing the points
to lie within the fictitious domain, we can show that this ap-
proach is suitable to consider linear problems of the finite
cell method.

2.2 Optimization of quadrature points and weights

We denote by Pk the set of polynomials of degree up to k
on [−1,1]. In this one-dimensional setting, it is well-known
that, with n Gauss-Legendre points and weights, each poly-
nomial in P2n−1 can be integrated exactly. Also, it can eas-
ily be shown that there are no n points and weights, so that
each polynomial in P2n can be integrated exactly. There-
fore, the choice of points and weights in the Gauss-Legendre
quadrature is optimal in the sense that each polynomial in
Pk can be integrated exactly for the highest degree k possi-
ble when n points are used.

However, the situation in higher dimensions is signifi-
cantly more complex than the one-dimensional one, mainly
due to the fact that domains in higher dimensions come in
a far greater variety of shapes [58, 61]. Thus, for general
domains in higher dimensions, there are no general rules to
determine points or weights.

Consider the moment fitting system (5) for m basis func-
tions and n=m= (pq+1)3 points. If the points are pairwise
distinct, the system is invertible, implying that there is a set
of m points, such that each basis function in F can be inte-
grated exactly. Note that, if we applied the same rule for the
number of quadrature points as in one dimension to integrate
the set of m functions exactly, a Gauss-type quadrature for-
mula in 3D would require

⌊ 1
2

(
pq +1

)⌋3
points, i.e., only ap-

proximately 12.5% of the original number of points. Espe-
cially in the context of nonlinear problems, where a repeated
computation of expensive integrals (such as the stiffness ma-
trix) is required, even a slight reduction of the number of
quadrature points can improve the computational complex-
ity of the whole computation in a significant manner. There-
fore, it is of great interest to numerically determine cheaper
quadrature rules, i.e. rules with fewer points, by which a set
of basis functions can still be integrated exactly.

A general approach aiming at the reduction of the num-
ber of points and weights n serves to solve an optimization
problem related to the moment fitting idea: For a given vec-
tor b of integrals of a set of m basis functions, we aim to find
the least number n and a set of n points and weights, such
that the residual

‖r‖2
2 = ‖r(x1, . . . ,xn)‖2

2 := ‖b−A(x1, . . . ,xn)w(x1, . . . ,xn)‖2
2

vanishes, where A(x1, . . . ,xn) denotes the moment fitting
matrix and w(x1, . . . ,xn) denotes the solution of the moment
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fitting system (5). More precisely, our strategy aims at find-
ing points x1, . . . ,xn with minimal n < m such that ‖r‖2 is
reduced to εmach, where εmach is the machine precision. We
note that the numerical value of ‖r‖2 heavily depends on
the condition number of the matrix A. Since A is invertible
and well-conditioned when the set of m =

(
pq +1

)3 tensor-
product Gauss-Legendre points is used, we get the trivial
upper bound n ≤ m, which implies that the minimization
problem has a solution.

As the problem belongs to the nonlinear least-squares
minimization problem class, several well-established itera-
tive techniques are available for its solution. A well-known
algorithm is the Levenberg–Marquardt algorithm that, es-
sentially, performs a combination of the Gauss–Newton method
and a gradient descent. Another algorithm, which can also
be applied for more general problems, is the Sequential Quadratic
Programming (SQP) algorithm.

A major shortcoming of the proposed method is its com-
putational performance.

The first performance issue stems from the fact that the
minimal number n of points is not known. More importantly,
it is unknown whether, for fixed n < m, the function ‖r‖2
has a global optimum; also, the structure and distribution
of local minima is unknown. Therefore, we have to esti-
mate n. Since the residual ‖r‖2 reaches machine precision
for n = m, we may assume that ‖r‖2 decreases when the
number of points n is increased. Thus, we may assume that
there is a number n, and ‖r‖2 attains machine precision for
some n points, while ‖r‖2 does not attain machine preci-
sion for any n−1 points. Therefore, we may apply a binary
search method that starts with 0 and m points to find the op-
timal number n in approximately log(m) executions of the
optimization method.

A second issue addresses the performance of each exe-
cution of the underlying optimization method. The methods
are usually sensitive to the choice of initial points. Subopti-
mal initial points may result in a slow decrease of the error,
resulting in a high number of iterations. Thus, it is necessary
to set a reasonable limit to the number of iterations. Even for
a good choice of initial points, the method may pursue a lo-
cal minimum that is far off from the optimum. As the struc-
ture of the domain of integration is unknown to the method
and the computation is performed on the reference element
[−1,1]3, it is safest to initially distribute n points at random.
We note that, in order to assess the actual minimal number
n of points for given b with high probability, several runs of
the binary search method have to be performed.

2.3 Smart octree

As mentioned in the introduction, the advantage of the clas-
sical octree-based integration is that it works robustly on any

kind of geometric representation. However, it does not ac-
count for the more detailed surface information available
from the geometric model. Therefore, in order to increase
the accuracy of the integration, many levels of octree re-
finement may be required. This results in a high number
of quadrature points, making the simulation expensive. To
overcome this issue, the method of smart octrees has been
recently introduced in [45]. This algorithm combines the ro-
bust features of the octree procedure with an automatic res-
olution of the intersection topology – including sharp edges
and corners that may be present in the cell – and high-order
surface representation. In the following, the key aspects of
the algorithm are presented.
The standard octree refinement generates eight octants in the
cut cells by generating 19 new internal nodes, which can be
categorized as follows:

– edge nodes, lying on the bisection point of the cell edges,
– face nodes, lying on the center of gravity of each cell

face,
– a mid-node, created at the center of gravity of the cell.

By construction, the octree procedure distributes the internal
nodes to pre-defined locations, the center of gravity of the
edges, faces, and the cell. The key idea of the smart octree
method is to relay this constraint. The internal nodes can be
moved around freely, as long as they stay on the respective
components of the cell (e.g. an edge node remains on an
edge). Therefore, before distributing the internal nodes, the
method examines the components of the cell and categorizes
them as follows:

– If an edge is intersected by the interface, it is identified as
an active edge. The corresponding edge node is moved
onto the intersection point.

– If a face is intersected by the interface, it is identified as
an active face. For a given active face, the face node is
shifted onto the intersection curve between this face and
the interface.

Finally, if the cell contains an active element, the mid-node
is shifted onto the interface while remaining inside the cell.
The concept of distributing internal nodes is depicted in Fig. 1.

Fig. 1: Smart octree generation. The nodes on active edges,
faces, and the mid-node are moved onto the interface. For
simplicity, only two resulting sub-cells are shown [45]



6 Simeon Hubrich et al.

While the location of active edge nodes becomes com-
pletely constrained by the intersection point, the active face
nodes and mid-nodes have remaining degrees of freedom.
For example, an active face node needs to lie on the inter-
section curve between the interface and the face, but can be
moved along this intersection curve freely. Further, an active
mid-node can be shifted to any location on the interface, as
long as it remains inside the cell.

The freedom in moving the active face nodes and the
mid-node becomes useful when the cell contains sharp edges
or corners. Consider the situation (also depicted in Fig. 2)
of a sharp edge e entering the cell through one of its faces
f . In this case, the active face node on f is constrained to
lie on the intersection point e∩ f , therefore its location be-
comes completely prescribed. Further, the constraint on the
location of the mid-node becomes stricter: it has to lie not
only on the interface, but also on the sharp edge e. However,
along this edge e, it can still be shifted freely. The last re-

Fig. 2: Sharp edge resolution. The active surface nodes
(blue) lie at the intersection between the sharp edges (green
color) and the respective face. The mid-node (purple) can be
placed on the sharp edge arbitrarily [45]

maining degree of freedom of the mid-node becomes com-
pletely constrained when the interface inside the cell con-
tains a corner v. In this case, the active edge- and face nodes
are distributed similarly as before, while the location of the
mid-node is prescribed by the location of v. Fig. 3 depicts
an example where the interface cutting through the cell con-
tains a corner and three sharp edges.

Fig. 3: Sharp corner resolution. The mid-node of the cell is
moved onto the sharp corner, while the active surface nodes
lie at the intersection between the sharp edges (green color)
and the respective face [45]

The outlined method requires that each active edge, face,
and cell can uniquely be associated to a single internal node.
If this requirement is violated, the smart octree method sub-
divides the cell into eight equal octants by a simple octree
refinement step. The algorithm then attempts to resolve the
interface in each of the resulting sub cells. This octree-like
refinement step is repeated recursively until the criterion of a
single internal node per edge/face/cell is fulfilled. If a max-
imum number of refinement levels kmax is reached, and the
cut case can still not be resolved by smart octree decomposi-
tion, the fallback strategy is to compute integrals by classical
octree.

The outlined steps of the smart octree method partition
the cut cells into eight octants, where the domain interface is
approximated linearly. If the geometric model is composed
of high-order entities, the trilinear cells are reparametrized
using the method of blending function interpolation [62] in
order to conform with these curved boundaries. To this end,
a local reparametrization of the interface is applied by inter-
polating a set of sample points projected onto the interface.
The sample points are interpolated using Lagrangian shape
functions. In Section 3.1.3, it will be demonstrated that the
accuracy of the numerical integration based on smart octrees
is controlled by the polynomial order pB of the interpolating
polynomials.

3 Numerical examples

In this section, we discuss the performance of the proposed
integration methods. To this end, we start off by investigat-
ing the accuracy in the integration of polynomial integrands
for broken cells. Next, we combine the integration methods
with the FCM and study the accuracy and efficiency consid-
ering problems of different complexity.

3.1 Cell cut by a sphere

In the first example, we contemplate a problem with an in-
tegration domain including a curved surface – a cell that is
cut by a sphere. In doing so, we consider a hexahedral cell
of the following domain

ΩC = [0, 1]3 . (9)

The geometry of the sphere is given by the following level
set function

φ (x) = (x− xc)
2 +(y− yc)

2 +(z− zc)
2− r2 , (10)

where the center coordinates xc, yc and zc of the sphere and
its radius r are given as

xc = yc = zc = 0 and r = 1 . (11)



Numerical integration of discontinuous functions: moment fitting and smart octree 7

Thus, the integration domain of the broken cell is defined as

ΩA = {x ∈ΩC : φ (x)≤ 0} . (12)

Consequently, the geometry of the integration domain de-
scribes an eighth of a sphere, as depicted in Fig. 4.

Fig. 4: Geometry of the integration domain of the broken
cell cut by a sphere

3.1.1 Moment fitting

To generate quadrature rules that are exact up to a certain or-
der, the integrals of the right-hand side in Eq. (4) have to be
computed exactly. Since the integration domain is described
by an eighth of a sphere, neither the quadrature of the right-
hand side of Eq. (4) as a volume integral applying an oc-
tree scheme or a surface integral based on triangulation will
be exact. Due to this fact, we computed the integrals sym-
bolically using Wolfram Mathematica [63]. An appropriate
choice for the position of the integration points is required
to provide a good conditioning of the matrix on the left-
hand side in Eq. (4). On this account, we study the condi-
tion number of the moment fitting equation system applying
the points provided by the adaptive point distribution (APD)
scheme provided in [51] and compare it to those using the
position of the standard Gauss-Legendre points (GLP). To
this end, we compute the condition number κ for different
quadrature orders pq = 0, ...,16 which are required when ap-
plying high-order shape functions in the FCM. Here, κ of A
is defined as

κ =
σmax

σmin
, (13)

where σmax and σmin are the maximum and minimum sin-
gular values of the system, computed by the LAPACK rou-
tine DGELSS [64]. The condition number of both point sets

is plotted in Fig. 5. As it can be seen from the figure, the
GLP yield a much better conditioning than the APD. Ap-
plying the GLP improves the conditioning of the moment
fitting equations system significantly. Moreover, using the
GLP leads to the same conditioning of the system for any
problem under consideration since the left-hand side in Eq. (4)
is independent of the integration domain and only depends
on the position of the integration points and the predefined
basis functions. The conditioning for the APD, on the other
hand, varies from problem to problem since the position of
the integration points depends on the topology of the broken
cell.
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Fig. 5: Condition number of the moment fitting equation
system applying different quadrature orders

Due to the better conditioning of the moment fitting equa-
tion system using the GLP, the solvability of the system is
improved significantly. Next, to point out this fact, we con-
sider the L2-norm of the residual ||r||2 of the moment fitting
equations where the residual is defined as

r j =
∫

ΩA

f j(x)dΩ−
n

∑
i=1

f j(xi)wi , j = 1, ...,m (14)

or, in matrix notation,
r1
...

rm

=


∫

ΩA
f1(x)dΩ

...∫
ΩA

fm(x)dΩ

−


f1(x1) . . . f1(xn)
...

. . .
...

fm(x1) . . . fm(xn)




w1
...

wn

 ,

(15)

where r j are the individual components of the residual vec-
tor of the system. Fig. 6 shows the L2-norm of the residual
||r||2 applying different quadrature orders pq = 1, ...,16 of
the moment fitting. Here, it can be seen that for the appli-
cation of the GLP the norm of the residual remains close
to zero within machine precision for all quadrature orders,
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while it appears to increase if the APD is used. Thus, we
could reduce the norm of the residual by a factor within the
range between 104 and 105 for the high-order quadrature
rules (pq > 9).
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Fig. 6: Norm of the residual of the moment fitting equation
system applying different quadrature orders

Next, we consider the conditioning of the moment fitting
quadratures. A common definition for the condition number
κq of quadrature rules is [65]

κq =
ng

∑
i
|wi| , (16)

where wi are the individual weights and ng the number of
integration points. To simplify the investigation of the con-
ditioning, we normalize κq by the volume VA of the integra-
tion domain ΩA

κ̄q =
κq

VA
. (17)

Fig. 7 shows the normalized condition number κ̄q of the mo-
ment fitting using the APD and the GLP for quadratures
of different order pq. From the figure it can be seen that
with increasing the order of the quadrature rule applying the
APD, κ̄q deviates significantly from the optimal value which
is 1. This deviation is due to two reasons. Firstly, the mo-
ment fitting quadrature is composed of negative and positive
weights, and secondly, the individual weights have a high
absolute value – which is in particular the case for the high-
order quadratures. On the other hand, applying the GLP for
the moment fitting results in a good conditioning for the
quadrature rules – although some of the weights might still
be negative, which is evident from the fact that κ̄q slightly
oscillates between 1 and 1.54.

Finally, we investigate the accuracy of the generated quadra-
ture rules by integrating polynomials of order pi = 0, ...,17.
In doing so, we consider four different orders of the moment
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Fig. 7: Condition number of the moment fitting quadratures
applying different quadrature orders

fitting quadrature pq = 4,7,11,16. Since the integrals of the
right-hand side in Eq. (4) are computed symbolically using
Wolfram Mathematica, the numerical integration has to be
exact for all polynomials where the order of the polynomial
is less or equal to the order of the quadrature (pi ≤ pq). To
measure the accuracy, we consider the relative error er in
integration, which is defined as

er =

∣∣∣∣ Iex− Iq

Iex

∣∣∣∣ , (18)

where Iq is the value of the integral obtained with the mo-
ment fitting quadrature, and Iex is the exact value of the in-
tegral that is computed symbolically using Wolfram Mathe-
matica. The results of the APD and the GLP are plotted in
Fig. 8 and 9, respectively. From the figures, it can be seen
that the relative error oscillates around a certain error limit
for pi ≤ pq and that a large jump occurs if pi exceeds pq.
However, the error level of the APD is significantly higher as
for the GLP, where the error is close to zero within machine
precision. This strong deviation when applying the APD is
due to the high values for the norm of the residual of the
moment fitting equation system, which originates from the
bad conditioning of the system. Ultimately, we can reduce
the relative error by a factor up to 106 for pq = 16 by utiliz-
ing the GLP. For pq = 16, the points of the GLP are plotted
in Fig. 10a, and the points of the APD scheme as well as
the corresponding sub-cell mesh are plotted in Fig. 10b and
Fig. 10c, respectively.

3.1.2 Optimization of quadrature points and weights

The performance of the optimization of quadrature points
and weights described in Sect. 2.2 is to be assessed in two
aspects. Firstly, we want to investigate the optimal number n
of quadrature points that lead to a residual ‖r‖2 in the mag-
nitude of the machine precision for the cell cut by a sphere.
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Fig. 8: Relative error in integrating polynomials with the
moment fitting using the APD
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Fig. 9: Relative error in integrating polynomials with the
moment fitting using the GLP

Secondly, we aim to check for accuracy by measuring the
relative error in the numerical integration of the same trial
polynomials as in Sect. 3.1.1, but using the quadrature points
and weights determined by the optimization algorithm.

For the first aspect, we apply the binary search method
described in Sect. 2.2, which aims to find an approxima-
tion to the optimal number of points n such that the resid-
ual attains machine precision, but does not attain machine
precision for any n− 1 points. As the optimization algo-
rithm gets highly time-consuming for larger n and pq, we
only try to find the optimal number n for quadrature orders
pq = 2, . . . ,7. The results are listed in Table 1. The results
indicate that the number of points may be reduced signifi-
cantly compared to the standard Gauss-Legendre quadrature
by applying the optimization algorithm. With an increase
in the order of the quadrature, however, the ratio of n to
the number of Gauss-Legendre points

(
pq +1

)3 becomes

poorer – in favor of the GLP. It can be seen that the final
residual almost reaches machine precision for each pq.

Quadrature order Optimal n by algorithm Residual ‖r‖2

2 10 (< 27) 1.5 ·10−16

3 27 (< 64) 5.3 ·10−16

4 66 (< 125) 5.47 ·10−16

5 120 (< 216) 4.0 ·10−15

6 246 (< 343) 2.77 ·10−15

7 382 (< 512) 7.93 ·10−16

Table 1: Comparison of the least number n of points required
for the residual ‖r‖2 to reach machine precision in com-
parison to the number of quadrature points for the Gauss-
Legendre quadrature

To assess the accuracy of the quadrature formula origi-
nating from the points and weights determined by the opti-
mization algorithm, we measure the error that occurs when
the trial polynomials from Sect. 3.1.1 are integrated. The
results for integrands of polynomial order pi = 2, . . . ,7 are
depicted in Fig. 11. The results show that the relative er-
ror remains stable in the range of 10−16 to 10−13 for all
pi = 2, . . . ,7. Integrands of higher degree than the order pq
cannot be integrated with sufficient precision.

3.1.3 Smart octree

For comparison, the 18 different polynomial integrands were
also integrated using the smart octree decomposition algo-
rithm, which was discussed in Section 2.3. Because each
edge and face contains a single active internal node, the al-
gorithm is able to decompose the cut cell into octants with-
out having to perform any additional octree refinements. Since
the cell is cut by a curved geometry, the high-order repa-
rameterization of the sub-cell faces needs to be employed.
Fig. 12 shows the resulting integration sub-cells of the smart
octree decomposition. As mentioned in Section 2.3, the ac-
curacy of the integration is determined by the polynomial or-
der of the surface interpolation pB. An example is depicted
in Fig. 13, where a 14th order polynomial is integrated by
a 20 point quadrature rule, on integration cells with differ-
ing pB. As the polynomial order of the surface approxima-
tion increases, the error of the numerical integration drops
rapidly. This relationship can also be observed in Fig. 14 and
15, where the error curves of the polynomial integrands are
depicted, for pB = 4 and pB = 12, respectively. For a lower
quality approximation, such as pB = 4, the error for differ-
ent polynomial integrands is in the range of 10−3− 10−7.
For a significantly better surface approximation, these error
levels can be drastically reduced, as depicted in Fig. 15 for
pB = 12. Because the order of the mapping of the integra-
tion cell increases as pB increases, the order of the quadra-
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(a) (b) (c)

Fig. 10: Moment fitting quadrature for pq = 16. a GLP. b APD. c Corresponding sub-cell mesh of the APD
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Fig. 12: Smart octree integration mesh generated on a sphere
octant

ture rule needs to be increased as well. This can be observed
in Fig. 15, where the curve representing pq = 4 is not able to
reach the error levels of higher order quadrature rules. Con-
cerning the computational effort, even in cases of a very high
polynomial order pB, the increase in integration time of the
cut elements is moderate.
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Fig. 13: Relative error of integration with smart octrees, de-
pending on the order of surface interpolation

3.2 Hydrostatic sphere

In the next example, we apply the proposed integration meth-
ods to a problem of structural mechanics utilizing the FCM
[14–16] and compare the results to the adaptive integration
based on an octree subdivision – which is commonly used
within the context of the FCM. To this end, we consider a
sphere with a uniform traction applied to its surface in nor-
mal direction [15, 51, 66], as depicted in Fig. 16a. Thus, the
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Fig. 15: Relative error in integrating polynomials with smart
octrees, pB = 12

sphere is subjected to a hydrostatic stress state. For the anal-
ysis, the material behavior of the sphere is assumed to be
isotropic linear elastic with Young’s Modulus E = 1.0MPa
and Poisson’s ratio ν = 0.3. The radius of the sphere is
R = 5.0mm, and the load on its surface is t̄n = 1.0MPa.
Provided that the center of the sphere is fixed, the analyti-
cal solution of the displacement field of the linear problem
reads

u(x) =


Cx

Cy

Cz

 with C =
1
E
(1−2ν)t̄n . (19)

Due to the symmetry of the problem under considera-
tion, only one eighth of the sphere has to be taken into ac-
count. Thanks to the fictitious domain approach, the sphere
is embedded into a fictitious domain, resulting in a domain
of an octant which can be easily discretized. Since the so-
lution is smooth and the FCM separates the approximation

of the displacement field from the approximation of the ge-
ometry, only one finite cell is needed for the discretization,
see Fig. 16b. Due to the linearity of the displacement field,
an Ansatz of order p = 1 is sufficient to solve the problem
exactly. This example presents a problem that is similar to a
patch test, where a homogeneous stress field is considered.
Using only one cell within a fictitious domain approach al-
lows to obtain the exact solution, provided that the geome-
try is treated appropriately and the computation of the stiff-
ness matrix and load vector is consistent. Fig. 16b shows the
model of the FCM analysis. Here, symmetric boundary con-
ditions are applied to the cell by fixing its face to the bottom
in z-direction, its face on the left-hand side in y-direction,
and its face on the back in x-direction – while the load is
applied to the curved surface of the physical domain which
is located within the cell.

As it can be seen in Fig. 16b, the cell is subdivided into
two domains. Here, only the physical domain defined by the
sphere is of interest for the computation of the stiffness ma-
trix. Consequently, the physical domain has to be resolved
during the analysis. In the framework of the FCM, this cir-
cumstance is taken into account by introducing the indicator
function

α(x) =

{
1 if φ(x)≤ 0
0 otherwise

(20)

where the domain of the sphere is implicitly defined by fol-
lowing level set function

φ(x) = x2 + y2 + z2− r2 . (21)

Having defined the indicator function α(x), the physical do-
main can be resolved very easily by a suitable integration
mesh. In the case of the presented moment fitting methods,
the physical domain is needed for the computation of the
integrals of the right-hand side. To this end, the surface cov-
ering the eighth of the sphere is given by a triangulated sur-
face mesh consisting of 525,718 triangles. The surface mesh
is depicted in Fig. 16c. Computing the volume, the relative
error results in a value of about 10−6. As can be inferred
from Fig. 17, hierarchical refinements are required to ob-
tain the same error level applying the adaptive integration
based on an octree subdivision 8. Here, the error in volume
is plotted over the total number of integration points, apply-
ing a Gaussian quadrature of order pq = 2 on every sub-cell.
The corresponding sub-cell mesh of 8 hierarchical octree re-
finements is depicted in Fig. 16d, resulting in a number of
2,061,424 integration points.

For the application of the inhomogeneous Neumann bound-
ary conditions, a parametric description for the curved part
of an eighth of the sphere is needed – where the load acts
in normal direction. To this end – in the case of the adaptive
integration and the moment fitting – we use the triangular
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(a)

t̄n = 1MPa

x
y

z

(b) (c) (d)

Fig. 16: Sphere under hydrostatic stress state. a Setup of the problem. b The FCM model using one finite cell. c Triangulated
surface of the eighth of the sphere. d Octree mesh with 8 refinements.
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Fig. 17: Relative error in volume applying the adaptive inte-
gration based on an octree subdivision for pq = 2

mesh depicted in Fig. 16c and only take triangles into ac-
count that describe the curved part of the sphere’s surface.
Having the parametric description of the surface, the corre-
sponding load vector is computed performing a numerical
integration on every triangle as described in [15].

Next, we study the efficiency of the proposed integra-
tion methods by considering the error in energy norm and
the von Mises stress σvM as the major quantities. Since the
sphere experiences a pure hydrostatic stress state, the stress
deviator vanishes – and, thus, the von Mises stress does as
well. Fig. 18 shows the contour plots of the von Mises stress
for the adaptive integration, the smart octree approach, and
for the moment fitting based on a triangulated surface mesh
and on an octree mesh for the integration of the moments.
For the smart octree approach, the order of surface interpo-
lation was chosen as pB = 4, and (p+5)3 integration points
were distributed in each integration cell. Here, it can be seen
that the moment fitting using a surface mesh and the smart
octree result in a higher accuracy than the adaptive integra-
tion and the moment fitting based on an octree integration of

the moments. Using the same discretization for the integra-
tion of the stiffness matrix as for the integration of the load
vector – as it is the case for the moment fitting using the tri-
angulated surface mesh and the smart octree – results in a
higher accuracy. This fact is demonstrated min more detail
by considering the error in the von Mises stress. To this end,
the relative error in the von Mises stress is defined as

evM =

∣∣∣∣σvM

t̄n

∣∣∣∣×100 [%] . (22)

For the investigation, we plot the error in the von Mises
stress along a radial line x = y = z ∈ [0,R/

√
3] as depicted

in Fig. 19 – where APD, GLP, and OP are the results of
the moment fitting using a triangulated surface mesh and
GLPOT denotes the results of the moment fitting utilizing an
octree mesh for the computation of the moments. It can be
seen that the results of the moment fitting based on a surface
mesh are almost identical with the smart octree, whereas the
results of the octree are significantly higher. The results of
the adaptive integration coincide with the results of the mo-
ment fitting if the same octree mesh is used for the com-
putation of the moments. Since we have almost the same
error level in the numerical integration, this difference orig-
inates from the different discretization of the mesh used for
the computation of the stiffness matrix and the mesh used
for the computation of the load vector, as mentioned before.
Consequently, a nice feature of the moment fitting is that the
same discretization can be applied for the computation of
the load and the stiffness matrix. This feature also holds for
the smart octree approach, because the resulting integration
cells are boundary conforming. Therefore, those faces of the
integration cells that lie on the interface can be directly used
for the application of the boundary conditions.

In the following, we consider the relative error in energy
norm as an additional quantity which is defined as

‖e‖E(Ω) =

√∣∣∣∣Uex−UFCM

Uref

∣∣∣∣×100% . (23)
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(a) (b)

Fig. 18: The von Mises stress for the sphere under hydrostatic stress state. a Adaptive integration based on 8 octree refine-
ments and moment fitting using the same adaptive integration scheme for the computation of the moments. b Smart octree
and moment fitting for the triangulated surface mesh using APD, GLP, and OP
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Fig. 19: Relative error in the von Mises stress along the di-
agonal cutline

In Eq. (23), Uex is the analytical value of the strain energy
which is defined as

Uex =
1
2

∫
3Ct̄n dΩ =

25
2

π [J]≈ 39.2699081698724 [J]

(24)

and UFCM is the strain energy of the FCM analysis. UFCM is
computed as

UFCM =
1
2

UTKU , (25)

where U is the displacement vector and K denotes the stiff-
ness matrix. The values of the relative error in the energy
norm of the different integration methods are listed in Tab. 2
– where the superscript ”OT” denotes the octree, ”SOT” the
smart octree, ”APD” the moment fitting using the adaptive
point distribution, ”GLP” the moment fitting utilizing the
position of the Gauss-Legendre points, ”GLPOT” the mo-
ment fitting with position of the Gauss points applying an
octree mesh for the computation of the moments, and ”OP”
the moment fitting with optimized position of the points and
the weights. Here, it can be seen that the relative error is
almost the same – with a value of about 0.2 [%] – for the
moment fitting and the adaptive integration based on an oc-
tree. This is due to the fact that these integration methods
have approximately the same error level in the volume in-
tegration. The lower value of the smart octree is due to the
higher accuracy of the geometry approximation.

Table 2: Relative error in energy norm given in percentage

p ‖e‖OT
E(Ω), ‖e‖

GLPOT

E(Ω) ‖e‖APD
E(Ω), ‖e‖

GLP
E(Ω), ‖e‖

OP
E(Ω) ‖e‖SOT

E(Ω)

1 0.19 [%] 0.2 [%] 0.07 [%]

Considering the number of integration points, ng empha-
sizes the main advantage of the presented integration meth-
ods in comparison to the standard adaptive integration based
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(a) (b) (c) (d) (e)

Fig. 20: Position of the integration points for the sphere under hydrostatic stress state. a Adaptive integration based on
8 octree refinements. b Moment fitting using APD. c Moment fitting using GLP. d Moment fitting using OP. e Adaptive
integration based on a smart octree using pB = 4 for the surface interpolation

on an octree. To this end, the total number of integration
points of all methods are listed in Tab. 3. As it can be in-
ferred from the table, the moment fitting reduces the num-
ber of integration points by a factor of about 105. More-
over, utilizing optimized points for the moment fitting re-
duces the number of integration points by a factor of about
3. The points of the different integration methods are illus-

Table 3: Total number of integration points

p nOT
g nAPD

g , nGLP
g , nGLPOT

g nOP
g nSOT

g

1 2,061,424 27 8 1728

trated in Fig. 20 with respect to the geometry of the cell and
the topology of the physical domain. Here, it can be seen
that the points of the adaptive integration and the moment
fitting applying the APD are located within the physical do-
main of the cell. For the moment fitting utilizing the GLP
and OP, however, the points are located within the physical
and within the fictitious domain of the broken cell.

3.3 Porous domain under pressure

As the final example of this section, we investigate a prob-
lem of a porous material. In doing so, we consider a cube
containing 27 ellipsoidal holes. The dimensions of the ellip-
soids and their center are chosen randomly. The dimensions
of the cube are given as 10× 10× 10mm3. Fig. 21a shows
the geometry and the boundary conditions of the problem
under investigation. As it can be seen from the figure, the
domain is subjected to symmetric boundary conditions – the
cube’s face at the back is fixed in x-direction, its face at the
left-hand side in y-direction, and its face at the bottom in z-
direction. A uniform pressure of 100MPa is applied to the
top face. The material behavior of the porous domain is as-
sumed to be isotropic linear elastic where the Young’s mod-
ulus E is 5.0GPa and Poisson’s ratio ν equals 0.3. For the

FCM analysis, the domain is discretized with a Cartesian
grid of 8×8×8 cells. This results in a total number of 512
cells, of which 175 are broken.

For the investigation, we compare the moment fitting to
the adaptive integration based on an octree and a smart oc-
tree subdivision of the broken cells. In doing so, we define
an error level of about 10−5 in the volume integration for all
integration methods under consideration. In case of the mo-
ment fitting – where we compute the moments via a surface
integration – we generate a triangular surface mesh for the
whole geometry, for which the error in the geometry descrip-
tion can be easily defined by any CAD program. Since the
mesh, however, represents the whole geometry, boolean op-
erations have to be performed between the broken cells and
the geometry. To this end, we use the Cork Boolean/CSG
library [67] and perform intersections to obtain the individ-
ual surface meshes for the physical domain of the broken
cells. The intersection between a broken cell and the geom-
etry is demonstrated in Fig. 21c, just to give an example.
To obtain the same error in integration, applying the adap-
tive integration based on an octree subdivision is not exactly
straightforward since the accuracy depends on the number
of refinements and on the number of integration points of
every sub-cell – which depends on the order of the quadra-
ture rule of the sub-cell. The order of the quadrature rule
pq, on the other hand, depends on the order of the Ansatz p
(pq = 2p). For this reason, we computed the error in the vol-
ume integration applying different orders of the quadrature
rule (pq = 2,4,8) for 1,2,3, and 4 refinements of the octree.
The results are plotted in Fig. 22. From the figure, it can be
inferred that 3 octree refinements capture the error of about
10−5 in the volume integration for pq = 4,8. For pq = 2,
however, the error in volume integration is about 10−4, even
for 4 octree refinements. Due to this reason, we choose 4
octree refinements for adaptive integration, to be on the save
side. The inside of the corresponding sub-cell mesh using
4 octree refinements is exemplarily depicted in Fig. 21d.
The integration mesh provided by the smart octree decom-
position employs a high-order reparametrization of the in-
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t̄n = 100MPa

x
y

z

(a) (b) (c) (d)

Fig. 21: Porous domain containing 27 ellipsoidal holes. a The FCM model. b Cartesian grid with 8× 8× 8. c Triangular
surface mesh of one broken cell used for the moment fitting. d Octree mesh with 4 refinements.

terface, with pB = 4 for the polynomial order of the surface
interpolation. Thus, the high-order mapping may have to be
taken into account by the order of the quadrature rule pq.
To investigate the effects of pq on the accuracy of the FCM
computations, we tested two scenarios, with pq = p+1 and
pq = p+4.
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Fig. 22: Relative error in volume applying different orders
pq for the quadrature rule of the sub-cells

As a measure for the accuracy, we again consider the rel-
ative error in energy norm, which is defined in Eq. (23) and
replace Uex by Uref = 1.065820653J which is a reference
solution obtained by an overkill FEM analysis. To study the
convergence behavior applying the moment fitting and the
adaptive octree integration, the relative error in energy norm
is computed for different orders of the Ansatz p. In Fig. 23,
the relative error in energy norm is plotted against the num-
ber of degrees of freedom in a double logarithmic diagram.
As it can be seen from the figure, the convergence behav-
ior is almost the same. As mentioned before, this is due to
the usage of approximately the same error level for all in-
tegration methods. However, the quadrature rules based on

the optimization of the position of the points and the weights
are only studied for p= 1, ...,4 since its setup becomes com-
putationally more and more expensive for higher orders of
the Ansatz. The two error curves corresponding to the smart
octree method show that the error in energy norm is inde-
pendent of the order of the quadrature rule employed. The
reason for this behavior is that the discretization error dom-
inates the integration error, even for high values of p.
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Fig. 23: Relative error in energy norm

Fig. 24 shows the total number of integration points ng.
The figure reveals that we can reduce the number of integra-
tion points significantly using the moment fitting and, thus,
obtain more efficient quadrature rules as compared to the
standard integration in the FCM based on an octree sub-
division. Applying the optimization of points and weights,
we obtain even more efficient quadrature rules, although the
gain is not that high anymore.

Tab. 4 lists the total number of the points of the indi-
vidual integration methods. Here, p denotes the order of
the FCM analysis, nOT

g and nSOT[x]
g the number of points

of the octree- and smart octree subdivision (with x denot-
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Fig. 24: Total number of integration points

ing the quadrature rule corresponding to (p+x)3 quadrature
points), nGLP

g the number of points of the moment fitting us-
ing the position of the standard Gauss-Legendre points, and
nOP

g the number of points applying the moment fitting with
optimized points and weights. As it can be inferred from the
table, the moment fitting reduces the number of integration
points by a factor of about 71 and a factor of about 42 for
the lowest (p = 1) and highest order (p = 10) of the Ansatz,
respectively. The factors for the other orders results in val-
ues between 71 and 42. Optimizing the points and weights,
we can reduce the number of integration points by factors of
about 100, 77, 82, and 74 as compared to the octree integra-
tion.

The number of integration points provided by the smart
octree approach lies between standard octrees and the mo-
ment fitting approach. For the quadrature order pq = p +

4 and low polynomial ansatz p, the amount of integration
points is approximately the same for smart octrees and stan-
dard octrees. However, the cost of numerical integration is
lower for smart octrees in these cases as well. Because the
method separates the broken cells into integration cells that
lie either completely inside or completely outside the do-
main, the inside-outside state of individual integration points
does not need to be evaluated in the integration loop any-
more. Instead, the corresponding state can be preassigned,
according to the state of the integration cell where the in-
tegration points originate from. In contrast, for the octree
method, there is no clear separation of the integration cells,
which is why they state of the points needs to be evaluated
on the leaves, making the integration loop more expensive.

To illustrate this point, we compare the computation of
the stiffness matrix at p= 1, using the standard octree with 4
levels of refinement and (p+1)3 points for the smart octree
with a surface representation of pB = 4. All computations
lead to an error in the energy norm of approximately 17 per
cent. However, the smart octree is two times faster if (p+4)3

integration points are used per cell, and three times faster for
(p+1)3.

The reduction of the number of integration points using
the moment fitting, however, comes at the expense of the
setup of the quadrature rule. To this end, in the following, we
consider the computational time for the setup of the quadra-
ture tq and the stiffness matrix computation tK applying the
moment fitting, and compare it to the results of the adaptive
integration based on an octree – which is commonly used
in the context of the FCM. In doing so, the computations
are performed in parallel on a computer featuring two In-
tel Xeon E5-2640 v4 processors with 128GB RAM – each
of them has 10 cores. The results are listed in Tab. 5 where
tOT denotes the computational time of the adaptive integra-
tion based on an octree, tAPD the moment fitting using the
APD, tGLP the moment fitting applying the GLP, and tGLPOT

the moment fitting using GLP where the right-hand side in
Eq. (4) is computed utilizing an octree – where the same
octree is applied as for the adaptive integration. From the re-
sults it can be seen that the overhead for setting up the mo-
ment fitting quadratures using a triangulated surface descrip-
tion (tAPD and tGLP) is much higher than the overhead for
the adaptive integration based on an octree (tOT ). However,
the overhead of the moment fitting could be reduced signifi-
cantly by applying an octree integration for the computation
of the integrals of the moment fitting equations (tGLPOT ).
In doing so, the set up of the quadrature is about 14 times
faster. This is due to the fact that the number of integration
points applying the octree (nOT

g = 22,820,133) is less than
the number of integration points which are used for the sur-
face integration on the triangles (nT R

g = 3,318,188,460) –
where the superscript T R denotes the triangles.

The computational time required for the stiffness matrix
evaluation can be reduced significantly when applying the
moment fitting method. This means in the case of nonlinear
analyses where the stiffness matrix has to be recomputed
several times during the Newton-Raphson iterations at dif-
ferent load steps, the overhead of the moment fitting will
be amortized. To emphasize this point in Fig. 25 and 26 the
computational time is plotted versus the number of the stiff-
ness matrix computations. In doing so, the computational
time is estimated as

t = tq +nKtK (26)

where nK is the number of the stiffness matrix computa-
tions. From Fig. 25, where a triangulated surface is used for
the moment fitting, it can be seen that the moment fitting
overtakes the octree integration after 20, ...,25 stiffness ma-
trix computations. Assuming 5 iterations per load step, this
means that the moment fitting is faster if more than 4 or 5
load steps have to be performed during the analysis. Further,
Fig. 26 shows that the efficiency of the moment fitting could
be improved combining the octree with the GLP. Here, the
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Table 4: Total number of integration points

p nOT
g nAPD

g nGLP
g nOP

g nSOT 1
g nSOT 4

g

1 532248 12002 7421 5321 43856 685250
2 1796337 42358 30974 23099 148014 1184112
3 4257984 102322 81593 51318 350848 1880326
4 8316375 203120 169700 112125 685250 2806784
5 14370696 353062 305717 1184112 3996378
6 22820133 565141 500066 1880326 5482000
7 34063872 849355 763169 2806784 7296542
8 48501099 1213392 1105448 3996378 9472896
9 66531000 1537325 5482000 12043954
10 88552761 2069222

Table 5: Computational costs of the moment fitting and the
adaptive integration based on an octree for 512 cells of poly-
nomial degree p = 6

tOT tAPD tGLP tGLPOT

tq [s] ≈ 25.33 ≈ 2992.53 ≈ 2542.2 ≈ 187.44
tK [s] ≈ 122.26 ≈ 2.85 ≈ 2.54 ≈ 2.54

moment fitting is faster than the octree integration after one
stiffness matrix computation.
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computations with p = 6 in a nonlinear analysis

 0

 50

 100

 150

 200

 250

 300

 0  1  2

co
m

p
u

ta
ti

o
n

al
 t

im
e 

[s
]

number of stiffness matrix computations [-]

octree integration
moment fitting - GLP

OT

Fig. 26: Estimated computational time for stiffness matrix
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4 Summary and outlook

In this paper, we presented two approaches to perform the
numerical integration of discontinuous functions. The ap-
proaches can be applied in any non-standard discretization
method where elements or cells are intersected arbitrarily by
the physical boundary or internal interfaces. To this end, we
proposed an integration scheme based on the moment fitting
in our first approach. Thereby, we showed that using the po-
sition of the standard Gauss-Legendre points transforms the
nonlinear moment fitting equations into a linear square sys-
tem with a good conditioning behavior. Thanks to the good
conditioning, the system can be solved accurately – result-
ing in an error close to zero within machine precision. Thus,
we are able to obtain highly accurate quadrature rules for ar-
bitrary domains, even for the high-order quadrature rules. In
addition to this, we extended the moment fitting by formu-
lating an optimization problem whose solution provides an
approximation to the solution of the nonlinear moment fit-
ting equations. In this optimization problem, we minimized
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the norm of the residual of the moment fitting system. We
demonstrated that the solution of the developed optimization
problem results in quadrature rules with fewer points and
weights. Consequently, the optimization leads to quadrature
rules that are more efficient with respect to the number of
quadrature points.

By applying the integration methods based on moment
fitting to linear problems of the FCM, we could show that
the position of the integration points is not necessarily re-
stricted to the physical domain, so that it is also possible to
have points within the fictitious domain of the broken cell.
It appeared that the presented moment fitting methods were
suitable to reduce the number of integration points signifi-
cantly as compared to the adaptive integration based on an
octree subdivision. Thus, the computation of quantities such
as the stiffness matrix can be performed more efficiently.
Moreover, the moment fitting yields the same results as the
adaptive integration if the integrals of the moment fitting
equations are computed using the same octree mesh for the
integration.

In the second and final approach, we presented a com-
posed integration scheme based on the smart octree. In this
method, the broken cells are subdivided into high-order sub-
cells, similar to the standard octree. To obtain a high ac-
curacy for the representation of the integration domain, the
smart octree provides high-order interpolation functions and
a node-relocation algorithm. Due to the high-order sub-cells,
we were able to show that the smart octree requires much
less sub-cells – at the same time resulting in a more accu-
rate approximation of the integration domain than the stan-
dard octree. We showed that the number of integration points
could be reduced as compared to the standard adaptive inte-
gration based on an octree subdivision. Although the num-
ber of integration points turned out higher than for the mo-
ment fitting, we emphasize, that in the case of the smart
octree, all points are located within the physical domain –
which might be of particular importance for nonlinear com-
putations. Further, the smart octree does not need to solve
an equation system as it is the case for the moment fitting.
Moreover, since the smart octree results in a higher accuracy
than the standard octree, it can be used for to compute the
integrals of the moment fitting equations.

In future work, we will focus on applying the proposed
integration methods to nonlinear problems of the FCM. In
doing so, we will investigate the influence of the location of
the integration points in the moment fitting method to find
out whether they should be restricted to the physical domain
or whether they can also be located in the fictitious domain.
Further, we want to combine the moment fitting with the
smart octree and similar integration methods for the compu-
tation of the moments in order to increase the accuracy by
simultaneously reducing the number of integration points.
Moreover, we will improve the optimization problem of the

nonlinear moment fitting equations for high-order quadra-
ture rules to perform the optimization more efficiently.
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3. N. Sukumar, N. Moës, B. Moran, and T. Belytschko. Ex-
tended finite element method for three-dimensional crack mod-
elling. International Journal for Numerical Methods in Engineer-
ing, 48:1549–1570, 2000.

4. N. Sukumar, D.L. Chopp, N. Moës, and T. Belytschko. Modeling
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5. T. Strouboulis, I. Babuška, and K. Copps. The design and analysis
of the generalized Finite Element Method. Computer Methods in
Applied Mechanics and Engineering, 181:43–69, 2000.
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40. A. Abedian and Düster. An extension of the finite cell method us-
ing boolean operations. Computational Mechanics, n/a(n/a):n/a–
n/a, 2017.

41. F. L. Stazi, E. Budyn, J. Chessa, and T. Belytschko. An extended
finite element method with higher-order elements for curved
cracks. Computational Mechanics, 31(1–2):38–48, 2003.
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