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SUHMARY

Adaptivity 1is now widely accepted in finite element
methods. Most adaptive codes refine the finited element mesh
locally controlled by some a posteriori estimation. In this
papar an adaptive hp-version is presented. The algorithm
increases the polynomial degree p and refines the finite element
mesh ,i.e. decreases the local mesh-width h. Numerical examples
show that even 1in presence of singularities in the exact
solution exponential rate of convergence is obtained.

1. INTRODUCTION

There are three ways to achieve convergence in the finite
element method: the h-version improves the accuracy of an
approximation by refining the mesh and using shape functions of
usually low degree. The p-version uses a fixed mesh but
increases the polynomial degree of the shape functions to
improve its accuracy and to obtain convergence. This method has
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been analysed during the past 5 to ten years, and there has

been some very promising software development4'5 which proves
the superiority of the p-version over the h-version. A
combination of the h- and p-version, i.e. a simultaneous local
mesh refinement and increase of the polynomial degree is called

r

hp-version. It has been shown theoretically

7.8 that exponential rate of convergence in the energy norm can
by achieved by this method even in cases with singularities in

and practically

the exact solution. In a prototype finite element expert system8
optimal combinations of mesh and polynomial degree are predicted



from a starting computation with low polynomial degree on a
coarse mesh. Using this prediction the user constructs with the
help of this expert system a mesh-degree-combination which
yields the desired accuracy at minimal computational cost.

In this paper an alternative to the expert system mentioned
above will be presented. The algorithm described below is fully
adaptive, i.e. starts on a coarse mesh with low polynomial
degree and refines in several cycles completely automatically
using a posteriori estimations of the distribution of the error

r

in energy norm on every mesh. In contrast to the polynomial
degree of the shape functions needs not be constant over the
entire mesh, i.e. every element can have polynomial order which
is adjusted to yield the desired accuracy with minimal cost.

2. P- AND HP-VERSIONS IN FEM

As model problem, consider
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The smoothness of the solution u of (1) depends on the
shape of the boundary and on f, Uy and 95+ Assume first that u
is analytic up to the boundary of n. Then the error neuE:=uU—qu
of an approximation U to u in the p-version, i.e. an increase of
the polynomial degree p of the elements on a fixed mesh
converges exponentially in the energy norm.
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C,a, are positive constants, N(p) is the number of degrees
of freedom depending on the polynomial degree p. If there are
reentrant corners in @ or if there is a sudden change of the
boundary condition then the exact solution can be written in the
form

A
i
U= uy 3 Cir gi(e} (3)
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Ci are stress intensity factors,u, and 95 smooth functions,

0
(r,e) polar coordinates centered at the singularity and A,

ordered increasingly. On a mesh as shown in figure la the
p-version converges as in figure 2 curve (a). An exponential
preassymptotic range is observed (curved down) and
assymtotically the convergence is levelling off to an algebraic
rate (straight 1line) which is governed by the power of the
singularity, i.e. by Al. If a geometrically refined mesh as in



figure 1b or 1lc is used, similar S-curves can be observed
(curves (b) and (c) in figure 2}, yet shifted compared to that
of mesh la. An optimal hp-version of the FEM 'switches' now from
one mesh to a geometrically refined one just at the intersection
points of the convergence curves always staying on the lower
left envelope of the curves. This envelope itself is 'bent

down', i.e. shows exponential convergence rate in the energy

2,6

norm. This behaviour has been proven theoretically in and

shown numerically in L and 8. Moreover it has been proven @ that
the optimal geometric progression factor for the hp-version is
independent of the strength of the singularity and should be
chosen as .15, yielding a very strong grading toward the
singular point. Yet the optimal combination of number of
refinement layers and polynomial degree depends on the stress
intensity factors Ci and the exponents Aye

Figure la-c: Mesh with 0,1 and 2 refinement layers
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Figure 2 : Convergence of a p-version FEM for different meshes



3. AN ADAPTIVE HP-VERSION

The core of the adaptive hp-version is the p-version finite
element code for linear potential, elasticity and

Reissner-Mindlin-plate problems which is presented in 5. The
polynomial degree p can be varied freely over the mesh in all
variables. Error indicators and estimators are similar to those

presented 1in 9. On the edges ri of an element i the jumps Jx{U)
and Jy(U) of the derivatives of the approximate solution U in x-

and y-direction are computed and integrated to the error
indicator
2 _h

2 2
- JJX(U) + 3,0 ar (4)

T
1
h is the diameter of the element, p the polynomial degree.
The error estimator for the error in energy norm is then defined

as
2 2
g = E"i (5)

where the sum ranges over all elements.

Now an adaptive hp-version can be defined. As the goal is
to achieve exponentional rate of convergence, the strategy is to
increase the polynomial degree p in smooth parts of the solution
and to refine geometrically at singularities. The basic
algorithm has the following form:

Step 1: Choose a basic mesh, which is just fine enough to
describe geometry, boundary conditions and loads of the problem.
Step 2 : Seperate the elements of the basic mesh into two parts,
those, where the exact solution is expected to be smooth (called
non-critical elements) and those adjacent to a singular point of
the exact solution, e.g. reentrant corners, points of change of
boundary conditions etc.(called critical elements).

Step 3: Assign polynomial degree p=1 to each element.

Step 4: Perform a FEM-computation and compute error indicators
for each element.

If the accuracy estimated by the error estimator is sufficient,
STOP.

Step 5: For each element decide if the error indicator is above
a prespecified level, i.e. if the accuracy has to be improved.
If yes, then

for noncritical elements increase the polynomial degree

by 1,

for critical elements refine geometrically towards the

singularity in this element.
Step 6: Goto step 4.



4, NUMERICAL EXAMPLES

In two numerical examples the behaviour of various
extension strategies will be compared. The uniform h-version
(marked as 'H 2' in the plots) refines, starting from the basic
meshes uniformly and uses polynomial degree p=1 on all elements.
The uniform p-version ('P 2' in the plots) wuses the basic mesh
and increases the p-degree uniformly over the mesh. The adaptive

h-version 19 ('H 1') uses elements of degree 1 and refines
locally controlled by the error indicators (4). In the adaptive
p-version ('P 1') the basic mesh is unchanged but the polynomial
degree is increased adaptively over the mesh, controlled again
by the error indicators (4). The adaptive hp-version was run in
two variants. One increases the polynomial degree uniformly over
the mesh and refines locally at the singularities ('HP 2'). The
other ('HP 1'} varies the polynomial degree over the mesh and
refines locally as defined in the algorithm of chapter 3. For
the hp-versions a list of possible singularities, i.e. points of
change of boundary conditions and reentrant corners was provided
as input data to the program.

Example 1. As domain  of computation the rectangle
2 = (-50,0)x(-7,0) was chosen with the boundary conditions

ui-50,y) = Uy for -7 ¢y <0
u(0,y) =0 for -7 <y ¢ -3.5 - g%-= 0 elsewhere.

[FaN

uy was chosen so that the exact solution could be computed

analytically. Due to the change= of boundary conditions at the
point (0,-3.5) the exact solution shows a singularity of order
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Figure 3 : Error in energy norm for example 1



r—l/2 in the flux. On the other hand the exact solution is
_extremely smooth (essentially linear) in the rest of the domain.

Figure (3) shows the convergence in energy norm for the
extension processes described above. The two adaptive
hp-versions show superior accuracy, with only 600 degrees of
freedom an error of less than .3 % is achieved. There is also a
significant difference between the hp-version with uniform
p-degree ('HP 2') and with variable p-degree ('HP 1'). This is
due to the large smooth part of the solution where HP 1 'wastes'
degrees of freedom whereas HP 2 uses only linear or quadratic
elements in this part of the domain. Both HP 1 and HP 2 show the
desired exponential rate of convergence in energy norm.

Example 2. The domain of computation with equipotential lines
for example 2 is shown in figure (4). As the exact solution for
this example is not known, the exact energy was estimated by
extrapolation from very fine meshes with high polynomial degree.
Figure (5) shows an adaptively refined h-version mesh for linear
elements and figure (6) gives the mesh constructed by the
adaptive hp-code. The different 'strengthes' of the various
gsingularities are reflected in the different number of
refinement layers at these points. Due to the strong geometric
refinement towards the singularities not all refinement layers
can be seen in che plots. For example at the change of boundary
conditions at the lower boundary of the domain there are 5
refinement layers towards the singular point.
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Figure 4 : Domain of comput- Figure 5 : Adaptively refined
ation with equipotential mesh (h-version)

lines for example 2



In figure (7) the convergence for the extension processes
is plotted. Essentially the same behaviour can be observed as in
example 1, vet now there is nearly no difference between
adaptive and non-adaptive p-versions and between HP 1 and HP 2.
This is due to the fact that nearly the whole domain is under
the influence of one of the 9 singularities leading to a nearly
uniform optimal p-distribution. Again the convergence curves for
the hp-versions are 'bent down' showing the exponentially
decreasing error.

The effectivity index 68=p/llell , which gives a measure of
the quality of the error estimator (5) 1is for all examples
reasonably close to 1. For example HP 2 in problem 2 yielded an
index of 1.17 for 38 dofs and .96 for 1104 degrees of freedom.

Figure 6 : Adaptively refined mesh (hp-version)
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Figure 7 : Convergence in energy norm for example 2
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