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1 Introduction

Since the beginning of practical use of fi-
nite element methods automatic mesh gen-
eration has become more and more impor-
tant. Automatic mesh generators can be clas-
sified into two groups, in the macro ele-
ment technique and in the free meshing tech-
niques. In generators of the first class the
user has to devide the structure into sim-
ple basic regions, described most frequently
by 3 to 8 noded isoparametric mappings.
The main advantage of these mapping meth-
ods is the possibility to generate well struc-
tured meshes. The main disadvantage is, that
it is nearly impossible to generate strongly
graded meshes on arbitrary domains. Various
free meshing algorithms (e.g. [1] [2] [3], and
references listed there) have been published
which use mesh density functions to generate
strongly graded meshes necessary for adap-
tive finite element computations. The main
disadvantage is, that most codes result in tri-
angular meshes, and there are only few pub-
lications on pure quadilateral meshing [4] [5]
(6].

In the second section of this paper we will
present an adaptive meshing algorithm based
on an idea of Bank [7], being able to generate
strongly graded triangular meshes. The con-
version of triangular to quadrilateral meshes
is described in section 3, extending an algo-
rithm presented in [8] to domains with curved
boundaries.
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In the last section we will introduce a basic
relaxation method to get optimized element
shapes. Numerical examples will demon-
strate the quality of resulting meshes.

2 Adaptive triangular
meshing

Our mesh generator is based on the idea of
recursive region splitting. Let a domain be
described by a union of simply connected,
non-overlapping regions, each defined by a se-
quence of boundary segments. These can be
composed of straight lines and curves. First
of all on each segment of the boundary new
nodes are generated according to a nodal dis-
tance value H. The value is computed by
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where A is the area of the domain and Np
the desired number of triangles.

Now the algorithm starts with the first gener-
ated node on the first segment and splits the
region into two parts Ry and Rj, so that ac-
ceptable angles close to 60° at the endpoints
of the new line are obtained. Then new nodes
are generated on this line. If B; has more
than 3 nodes, the splitting is repeated start-
ing with the next generated node. If R,, has
three nodes, a triangle is defined and split-
ting is continued in region R,_;. With this
algorithm it is possible to generate a quasi-
uniform mesh. To be able to introduce a func-
tion for a desired mesh density d(z) let us
assume, that an initial triangular mesh M,
with a node list Ny has already been defined.

(1)



d(z) may result from an a posterior: error es-
timation after a previous finite element com-
putation on M, as well as from a prior: crite-
ria or from user interaction. Obviously d(z)
is equivalent to a function A(z) defining the
desired local distance of nodes at point z.
A quality measure to be observed for 'good’
triangular meshes is the ratio of diametres
of adjacent elements. This ratio has to be
limited by a user definable number RATIO.
If this limit conflicts with the local distance
function, h(z) has to be smoothed.

We generate a second mesh M5 in a way sim-
ilar to that described above, observing now
the mesh density defined by the first mesh
M; on the generated new splitting lines.
We obtain a function f(¢),being the distance
function A(z) restricted to the splitting line
(Fig. 1). The number of nodes to be gener-
ated on each new line is

k-1
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with N(k;, kit1) =(Number of new nodes be-
tween intersection point k; and k4 of the
new splitting line with the old mesh). Then
F(z) is defined by integration of f(t)
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As f(t) is strictly positive, F(z) is a
monotonously increasing function of z. Tak-
ing N, intervals of equidistant length on the
y-axis and corresponding points on the z-axis
(Fig. 2), we finally get the desired density-
controlled distribution of nodal points on the
intersection line.

The efficency of this method is shown in Fig.
3 for an L-shaped domain with a local refine-
ment at the reentrant corner.

3 Transformation of
triangular to quadrilateral
meshes

Johnston [9] has published a transformation
method which combines, in a first step, suit-
able neighboring triangles to quadrilaterals.
Obviously this strategy alone can not create
a pure quadrilateral mesh for an odd num-
ber of triangles, as well as an even number
may produce ’islands’ of isolated triangles.
Therefore in a second step these islands are
resolved by edge flipping techniques or by in-
troduction of ’split propagation’ which often
has to be defined up to the boundary of the
domain.

Instead of combining two neighboring trian-
gles to one quadrilateral, our strategy is to
split two adjacent triangles into four quadri-
laterals as shown in Fig. 4. If P; to Py are
chosen to be midside points, a compatible
quadrilateral mesh will be generated except
for possible islands of one or more triangles.
As shown in Fig. 5 every remaining trian-
gle can be split into 3 quadrilaterals, com-
necting points on the sides with an interior
point, finally resulting in a purely quadrilat-
eral mesh. Obviously this procedure is not
unique. As our goal is to obtain well-shaped
quadrilaterals, first a list of all possible com-
binations of neighboring triangles is gener-
ated and sorted according to the following
angle-criterion:

4
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A combination is forbidden if one angle of
the quadrilateral is greater than an accept-
able angle less then 90°. Actual combinations
are then generated in the sequence of this
list. This algorithm is very easy to imple-
ment and, due to its strictly local nature (ex-
cept for the sorting of list (4)) only of linear
time complexity. An adaptive, purely quadri-
lateral mesh is shown in Fig. 6.



4 Nodal Relaxation

The desired interior angle for triangular el-
ements is 60° and so, after conversion of a
‘'good’ triangular to a quadrilateral mesh, an
accumulation of angles near 60° and 120°
is observed. The optimal interior angle for
quadrilaterals is yet 90°, so the converted
mesh has still to be improved. In our mesh
generator a relaxation according to the nodal
distance function is performed. After genera-
tion there is a difference between the actual
distance d;;, of node i to each of its neighbors
k=1,...n; with relative coordinates (zk, yir)
and the mean desired distance h;; in node i
and node k.

The relaxed coordinates of node i are defined
by
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Numerical experiences show that three re-
laxation sweeps are enough for sufficiently
smoothing the mesh. Fig. 7 shows the mesh
of Fig. 6 after 3 relaxation sweeps.
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Fig.1: Distance function f(t) over new splitting line

B e -
R T
e T e ——

P

L e e

Fig.2: Definition of new nodal points on splitting line
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Fig.3: Adaptive triangulated mesh
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Fig.4: Quadrilaterals created by splitting of two neighboring triangles

Fig.5: Triangle split into 3 quadrilaterals
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Fig.6: Refined quadrilateral mesh ( no relaxation )
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Fig.7: Refined quadrilateral mesh after relaxation



