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SUMMARY

In this paper an algorithm for generating pure triangular or pure quadrilateral meshes for arbitrary
polygonal domains is presented. The first part shows a triangulation procedure being as suitable for local
mesh refinement as for local mesh coarsening. In the second part an algorithm for transformation
of triangular grids to quadrilateral meshes of the same relative mesh density is introduced. Two simple
strategies are shown which can easily be implemented into any existing triangulation algorithm.

1. INTRODUCTION

Mesh generation has been a topic of research since the beginning of the practical use of finite-
element methods. Following the excellent survey paper of Ho—Le, ! most mesh generators can
be classified into two groups. In the macro-element technique the user has to divide the
structure into simple basic regions, which are then meshed automatically into a more or less
regular element pattern. These basic regions are described most frequently by 3- to 8-node
isoparametric mappings. One main advantage of these mapping methods is the possibility to
easily generate purely quadrilateral meshes — a favourable result, as 4-noded elements show
very often higher accuracy than the corresponding triangular elements. The big disadvantage
of macro-element meshing is that it is nearly impossible to generate strongly graded meshes
on arbitrary domains.

In a completely different approach free-meshing techniques are capable to generate
automatically unstructured grids for arbitrary polygonal domains. Various algorithms (e.g.
References 2 and 3 and references listed there) have been published which use mesh density
functions to generate strongly graded meshes necessary for adaptive finite-element
computations. The main disadvantage of these codes is that they all result in triangular meshes.
Until now, there have been only very few publications for pure quadrilateral mesh
generation.®> A different but obvious idea is the transformation of triangular grids into pure
quadrilateral meshes. Recently, Johnston et al.® published an algorithm working for arbitrary
domains and graded meshes. A similar successful approach has been reported in Reference 7.

We present in this paper a different, very simple idea, robust and easy to implement,
resulting in excellent meshes even for rapidly varying mesh density functions. In the following
Section we introduce our general concept and the triangular meshing. The conversion from
triangular to quadrilateral meshes is explained in Section 3, followed by various examples in
Section 4.
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2. GRADED TRIANGULAR MESHING

Let a domain be described by a union of simply connected, non-overlapping regions, each
defined by a polygonal boundary. To be able to introduce a function for the desired mesh
density d(x) let us assume that an initial triangular mesh M; with a node list N, has already
been defined. This first finite-element mesh is created assuming a constant mesh density
function over the whole domain. Since this is only a special case of an arbitrary continuous
mesh density we do not need to consider this initial stage separately.

Let now d(x) be defined by its nodal values, assuming an interpolation with linear triangular
shape functions within each element of Mj d(x) may result from an a posteriori error
estimation after a previous finite-element computation on M, as well as from a priori criteria
or from user interaction. Obviously d(x) is equivalent to a function 4(x) defining the local
distance of nodes at point x. A possible quality measure for good triangular meshes is the ratio
of diameters of adjacent elements. This ratio shall be limited by a user-definable number
RATIO. If this limit conflicts with the density function, then d(x), respectively #(x), has to
be smoothed. This is done by the following algorithm:

Step 1: Sort all nodes according to their local distance function.
The smallest value gets the first position in LIST.

WHILE LIST is not empty

Step 2: Take the first Node n; from LIST
Step 3: FOR EACH neighbour nj of n;:
Step 3a: Compute distance /; of n; and n;
log(/*(RATIO - 1)) )
log RATIO

Step 3c: IF(RATIO**h; < h))THEN

® Remove n; from LIST and set ;= RATIO**h;,
® Insert n; into LIST according to the new local distance function 4;

END IF
END WHILE

Step 3b: Compute k = int[

With the smoothed density function the triangulation of the domain can start. As our basic
concept we use the idea of recursive region splitting which was published, for example, in
Reference 8 or 9. The basic principle is shown for a domain with one region in Figure 1.

First, nodes are created according to the density function on the boundary of the region.
Then the region is divided recursively into smaller domains. Dissection lines are chosen so that
the resulting angles are close to 60 degrees. On each dissection line nodes are created in a
distance suggested by the local distance function. Note that mesh M, and node list N; is used
only for the definition of d(x) and A(x) and that the newly created node list N> of mesh M;
does not necessarily include N;. Thus it is easily possible to create meshes M> which are locally
coarser than M,. This is especially important for transient computations where the mesh
density has to vary over time, .

Recursive region splitting results in simple standard regions with three or four nodes. Finally
quadrilaterals are divided along their shorter diagonal. A following optimisation of the mesh
is performed by a nodal relaxation procedure. As our goal is not to generate uniform but
graded meshes, the simple relaxation method by standard Laplace smoothing is not adequate.
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Figure 1. Triangulation procedure

We have to consider the desired mesh density at each node. To explain our relaxation
procedure, consider an element patch around a node i with neighbouring nodes iy, ..., ix. The
nodal distance function (i.e. the desired distance to its neighbours) shall be denoted by hi, and
hi, ..., hir, respectively. For each edge ey, ..., eix from node i to its neighbours we can define
a mean desired distance as

hij= ' ()

Let the relative co-ordinates of iy, ..., ix with respect to node i be given by (xi1, yi1) ... (Xik, Yix)
and let /i1, ..., lir be the frue distance to the neighbours. Then the ‘relaxed’ co-ordinates of node
i are given by the weighted centre of gravity

k k
Xij* €j €ij
-xi — ——— —_
(J’; hij )/ (El hz;f)

k k
i (,r; hij )/(;:1 hij’)

Our numerical experiences show that three relaxation sweeps are enough for sufficiently
smoothing the mesh.

)



124 E. RANK, M. SCHWEINGRUBER AND M. SOMMER

3. TRANSFORMATION TO A QUADRILATERAL MESH

We will present two strategies to transform triangles into quadrilaterals. Both are extremely
easy but can be combined to a simple and efficient algorithm. As shown in Figure 2 every
triangle can be split into three quadrilaterals, connecting points on the sides of the triangle with
an interior point. Usually the mid-points of the sides and the centre of gravity are good choices
for these new nodes. Obviously it is possible to transform any triangular into a quadrilateral
mesh only by this strategy, yet resulting element shapes are odd, as shown in Figure 3.

A different idea has been used in Reference 6 where neighbouring triangles are combined to
quadrilaterals, as shown in Figure 4 for the same basic triangular mesh. Obviously this strategy

Figure 2. Triangle split into three quadrilaterals

Figure 3. Quadrilateral mesh derived from triangular mesh (thick lines) by strategy 1

Figure 4. Quadrilateral mesh by combination of neighbouring triangles
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Figure 5. Quadrilaterals created by splitting of two neighbouring triangles

cannot create a pure quadrilateral mesh for an odd number of triangles, and an even number
may produce ‘islands’ of isolated triangles. These islands are resolved by edge-flipping
techniques or by introduction of ‘split propagation’,  which often have to be defined up to the
boundary of the domain.

Instead of only combining two neighbouring triangles, our second strategy is to split two
adjacent triangles into four quadrilaterals as shown in Figure 5. If mid-side points are chosen
for P, to P,, a compatible quadrilateral mesh will be generated except for possible islands
(Figure 6). But these isolated triangles can now be split into three quadrilaterals, as
demonstrated at the beginning of this Section. The important difference to the algorithm of
Reference 6 is the strictly local resolution of triangular islands. This can be performed very
fast in a computer program and does not disturb element shapes of already generated
quadrilaterals.

A question still to be answered is the sequence of combination of triangles to quadrilaterals.
Since our goal is to construct meshes which are as ‘smooth’ as possible we can define quality
measures for resulting elements and introduce heuristic strategies for the combination sequence
in order to meet these criteria as well as possible. One possible measure is the ratio of the radii
of inscribed and circumscribed circles, and another one the difference between largest and
smallest interior angle. Before actually combining neighbouring triangles to quadrilaterals, the
quality criterion is computed for every possible pair of triangles and stored in a list. This list
(with length less than 3 X Number of triangles) is then sorted with respect to the quality
criterion and actual element pairs are created in the sequence of their position in the list.

A final mesh optimization is performed by a nodal relaxation similar to that described for

/

Figure 6. Triangle islands in quadrilateral mesh




126 E. RANK, M. SCHWEINGRUBER AND M. SOMMER

Figure 7. Final mesh after relaxation

triangular meshes in Section 2. Figure 7 shows the relaxed mesh after using as quality criterion
the difference of interior angles.

4, NUMERICAL EXAMPLES

In our first example a sequence of structures and meshes is shown, generated in the course of
an adaptive finite-element computation. Figure 8 shows a cross-section of a bridge, the defining
contours being extracted from CAD data of the structure. In Figure 9 the first triangular and

L

Figure 8. Defining contours of a cross-section of a bridge
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Figure 9. Triangular mesh with uniform density function
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Figure 10. Quadrilateral mesh with uniform density function

in Figure 10 the first quadrilateral mesh with a uniform mesh density function is plotted. The
difference between interior angles is used as a quality criterion for the combination of triangles
to quadrilaterals.

For the finite-element computation linear elasticity and plain strain conditions are assumed
and the structure is loaded by a combination of self-weight and wind load from the right. After
the first finite-element computation, error indicators are computed following the ideas of
Zienkiewicz and Zhu.'® Figure 11 shows the mesh density function derived from the
distribution of error indicators. For the computation of this mesh density function the
triangular discretisation was used.

Figure 11. Density function derived from error indicators

Figure 12. Refined triangular mesh
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In Figure 12 the refined triangular mesh is shown, reflecting the desired mesh density very
well. The transformation of this triangular mesh into quadrilaterals results in a mesh shown
in Figure 13. Well shaped quadrilaterals are generated even in the transition zones of coarse
to fine mesh. The computational time on an HP9000-400 with a Motorola 68030 processor was
120 s for the triangular mesh of Figure 12 and an additional 30 s for the transformation to
the quadrilateral mesh.

The final two pictures in Figures 14 and 15 show a structure with various refinement zones.
A zoomed plot of a strongly refined region in Figure 15 underlines again the capabilities of
the algorithm.
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Figure 13. Refined quadrilateral mesh

Figure 14. Quadrilateral mesh with various refinement zones
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Figure 15. Zoomed plot of strongly refined zones
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