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INTRODUCTION

The hp-version of the finite element method (e.g. Guo,Babuska 1986) combines local
mesh refinement with an increase of the polynomial order of the shape functions. It has
been shown theoretically and in many numerical examples (e.g.Holzer et.al. 1990), that
exponential rate of convergence in energy norm and excellent accuracy can be obtained
for linear elliptic boundary value problems. The hp-version has also. been applied
successfully to more general problems like reaction diffusion equations or nonlinear
Navier Stokes equations (Demkowicz et.al. 1990). Recently a variant of the hp-version
as a combination of a high order approximation with a domain decomposition method
has been suggested by the author (Rank 1992) . This ’hp-d-version’ is similar to the
's-version’ (Fish 1992) using a superposition of independent finite element meshes.
The suggested approach is also related to domain decomposition methods analysed
by Bramble,Ewing et.al. (1990) and to the multi-level splitting method of Yserentant
(1986). The basic idea can be explained as follows. In a first step of the analysis a pure
p-version approximation is performed on a coarse finite element mesh. Controlled by
user interaction or by an a posteriori error estimation the coarse mesh is then covered
partially by a geometrically independent fine mesh. On this second mesh a low order
approximation is performed and the global approximation is defined as the hierarchical
sum of the p-approximation on the coarse mesh and the h-approximation on the fine
mesh. Global continuity of the finite element solution can be guaranteed by imposing
homogeneous conditions at the fine mesh boundary. The hierarchical nature of the
approximation also reflects in the structure of the arising linear equation system and
can be used in an efficient solution algorithm.

In the next section algorithmic details are addressed, and it is shown how to apply
this domain decomposition method for multiscale problems. The p-version is used to
model the large scale solution behaviour, the h-version approximation being coupled
consistently for simulation on the microscale. In the last section numerical examples
are presented showing the ability of the method to efficiently and accurately model
problems with a scale ratio of more than four orders of magnitude.

THE H-P DOMAIN DECOMPOSITION

As our model problem we will consider a reaction-diffusion equation

—V(D(z)Vu) + ku = fin (1)
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with appropriate boundary conditions. A subdomain Qs C £2; with boundary T'; as in
Figure 1 shall be defined and we will assume that a typical scale of Q5 is much smaller
than the diameter of Q1. {25 will cover local features important for an accurate finite
element simulation on the global domain ;. To mention a few, these features could
be concentrated loads, locally inhomogeneous material , sharp reaction and shock
fronts or localization zones. In the foilowing a finite element space will be constructed
allowing for a globally C°-continuous approximation on a composite mesh scematically
shown in figure 2.

Figure 2 : Composed mesh

Let Ty = {t1:,1 € I1} be a regular triangulation of ; which is chosen so that
there is a subset I3y C I1 with Q; C U{t1:, 1€ L1}

Let 75 = {t2:, i € I3} be a regular triangulation of Q3 which is chosen so that for
every ts; in T3 there is exactly one § in I ; with ¢5; C t1; le. elements of T; do not
intersect edges of the triangulation 73.

On Q3 we choose now S o, as a 'standard’ finite element space over T3 and a
subspace

S;?,nz = {v € Sp,q,] v=00nTs} (2)

Typically, we use for Sk n, an approximation of low order finite elements, for example
p = 1 or p = 2. Similary, we define a p-version approximation space Sp o, over the
triangulation 77 with a subspace

Spa, = Spau \ Sha, (3)
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The global approximation space is now defined as
Shp = Sha, ® Spa, (4)

i.e. every functionin Sj , can be represented by the sum of a (global) p-version function
and a (local) h-version function. To be precise let {N | i € I} be the set of shape
functions of the h-approximation on the fine mesh, {N? | i € I,} the set of shape
functions of the p-approximation on the coarse mesh. With

T
Ty Z 2! NP = x?TN? and up = Z 2P NP = x*" NP (5)
LET, i€l

and real coefficient vectors xP and x”, every u = up + u, € Shp is continuous by
construction. The weak formulation for a hierarchical FE-approximation of (1), using

B, p)= D(z)VuVv + kuv dQ and F(v)= fv dQ (6)
0, a1

as bilinear form and load functional can now be formulated.

Find upg = up+u, € Shp so that for every iest function v, € 53,91 and vy € Sg,ﬂz
B(up + un,vp) = F(vp) and Bup + up,va) = F(vs) (7)

In matrixiform the weak formulation can be written as

ey A x*\ _ (F
= (i ) (2) - () ®

App = (@ij)ijer, » Ann = (aijlijenn » Anp = (ij)ien jer, » @ij = B(N;, N;)  (9)

with submatrices

.Muferic\i 1: [_),i

Material 2: D(x), k [x)

Figure 3 Element with overlay

The righthand side of (8) is defined analoguously. A question to be addressed next
is the computation of element matrix and load vectors for locally inhomogeneous
material. Consider a situation scematically shown in Figure 3, a single element ¢, being
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partially overlaid by the refined domain 5. Only the shaded part in Q, is assumed
to have material coefficients D(z), k(z), differing from ’‘global’ material constants D
and k in the rest of {,. Let V; € 53,91 and N; € S, be functions having support in

tp. The coeflicient af;-’ of the element matrix of ¢, is given as

a:; = / D(JT) V N; VJN:? + k(E)N,'IVj dz :f EVJ‘V,' VIVJ- +E.N;Nj dz +
tp ty
+ > / D(x) VN;VN; + k(z)N:N; dz
12,1 CQNt, ¥ i2
- > / D VN,VN; + kN;iN; dz
t3,1C0aNt, Y t2u
(10)
Thus the element matrix of ¢, can be computed by a composed integration rule taking
into account the locally different material in {25 in the following

Algorithm

Loop over all p-elements

Compute element matrices with
material D, k

Loop over all h-elements

Compute composed element
matrices with material D(z), k(z)
(i.e. h-d.o.f.s and partial
domain-integrals of p-d.o.f.s)

compute partial p-element-matrices
(corresponding to domain of
h-element) with material
-D, -k
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NUMERICAL EXAMPLES

1 u=9 N

Tigure 4 : domain of computation for example 1

The domain of computation of the first example is given in figure 4, showing two
concentric quarter-circles with radius 1 for €; and 0.05 for Q5. In Q; diffusion and
reaction coefficient are chosen to be D = .05 and & = 10000; in Q;\Q> D =1 and
k = 0. Homogeneous Dirichlet b.c. are set along the x- and y-axis, natural b.c. are used
along the circular arc. In order to be able to compute an exact solution the righthand
side of (1) is set to

f = —D(r);l:-g— g(r} sin(46)

g(r) being the solution of an auxiliary 1D-problem

D(r)(urr — -?lju,) —k(r)u=0,u(0)=0, u(l)=1

Figure 5 : Composed mesh and global solution
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Figure 6 : local solution

The exact solution decays like a modified Bessel function of the first kind of order
0 for » < 0.05 with an exponential decay length of approximately 2/1000, yielding an
interface layer on a microscopic scale. Figure (5) shows the composed mesh with the
(global) circularly oscillating solution. The local solution near the interface is given in
Figure 6.

A computation with 370 degrees of freedom in the fine mesh and 81 degrees of
freedom for polynomial degree p = 4 in the coarse mesh yields a pointwise error
distribution as shown in Figure 7 for the global scale. The maximal error (plotted
in dark) is 0.065 compared to a maximal solution value of 1. The error distribution
around the interface is shown in Figure 8 with a maximal error of 0.025 compared to
a maximal solution value of 0.35 in the plotted window.

Figure 7 : Error on macroscopic scale



Figure B8 : error on microscopic scale

In the second example ¥ = 0 D = 1 everywhere, boundary conditions are set as
indicated in Figure 9, showing on the lefthand side the geometrically refined mesh of
the macroscopic scale and on the righthand side an enlarged area around the origin
with a local heat source (plotted dark). u =0 for —1000 <z < -1, y=0andu=1
for 0 < y <1000, = = 1000.
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Figure 9 : Mesh, boundary conditions and local heat source for example 2

The global mesh for the p-version is refined geometrically towards the origin. A
contour plot of the global solution is shown in Figure 10. Figure 11 gives the finite
element solution on the microscopic scale near the origin, showing the solution at
the transition from fine mesh to coarse mesh to be continuous as it is guaranteed by
construction of the method. It should also be noted that this example shows well the
interaction of local and global solution. Neither the microscopic nor the macroscopic
behaviour could be modelled accurately without taking into account the solution on
the other scale.
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Figure 11 Solution near origin
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