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1 Abstract

During the last decade there has been a very successful development of Lat-
tice Gas (LG) algorithms for simulation of flow-problems and related topics
parallel to the refinement of classical methods like Finite Differences, Finite
Elements (FE) and spectral methods.[1-3]

Due to their inherent structural differences LG- and FE-algorithms show spe-
cific advantages and disadvantages when being applied to specific parts of
e.g. multiphase-flow-problems governed by the incompressible Navier-Stokes-
equations. The main difference can be recognized in the fact that LG-methods
are strictly local algorithms while FE-methods proceed (typically) in a non-
local way.

Analysing problems where both local and non-local interactions are equally
important, it is evidently desirable to couple the two algorithms in order to
gain the advantages of both formalisms.

In order to demonstrate the power and efficiency of a mixed algorithm we
implemented the so-called Immiscible Lattice Gas [6] in its Galilean invariant
form and coupled it with a FE-program for field computations. As a prelim-
inary example we calculate the qualitative dynamics of a two-phase charged
fluid which is accelerated by the electric field of a capacitor, changing the field
by its own charge. The increase in computational time for the coupled pro-
gram turns out to be small compared to the stand-alone CA-implementation.
The principal coupling algorithm is the same for all LG and FE-variants and
might serve as a valuable algorithmic help for the simulation of a variety of
complex coupled problems.
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2 The problem

Consider a two fluid mixture flowing through a channel. At the upper bound-
ary particles of both colowrs cuter with a predefined average speed and flow
downwards. The influence of surface tension generates a steadily increasing
decomposition of the mixture. Both fluids carry a certain amount of charge
per particle of a sign according to their colour. The electric field of these
charged particles is small enough, so that decomposition is still possible, but
weakened. A capacitor located at the lower part of the channel (fig.1) pro-
duces an electric field which accelerates particles according to their charge,
but large bubbles of particles of comumon colour decrease the electric field of
the capacitor plate towards which they move. This is a 'non-local’ field-effect
which can not be efficiently treated by local CA-algorithms alone.
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Figure 1: Flow channel with capacitor
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3 The Lattice Gas Model

We use the socalled immiscible lattice gas (ILG) algorithm of Rothmann et
al. (1-3) which allows to simulate two-phase flow while producing surface-
tension-effects with a g(o) = 1 condition to ensure Galilean invariance of
interface - flow. The automaton particles move on a hexagonal grid, there is a
maximum of 16 rest-particles (more are possible but not used in the following
example) and 6 moving particles per site. The look-up-table for the collisions
is quasi-deterministic because the individual post-collision-state on a site is
chosen from all possible ones according to its probability of existence in order
to obtain balanced collisions.

For each site a ’colour’-field is computed at each time-step from the neighbour-
sites in order to send particles of a certain colour into the direction of neigh-
bours with a majority of particles of the same colour. The influence of the
electric field on the redistribution of particles on a site is precomputed in
an additional look-up-table. The direction of the electric field is quantized so
that there are 32 directions left to serve as an entry for this look-up-table.
For every possible combination of moving particles at a site we precomputed
the distribution that maximizes the scalar product of site velocity and electric
field . These new states differ in their new momentum (i.e. acceleration) and
so an additional look-up-table is created with weights antiproportional to the
change of momentum in the new site distribution. This ensures that later the
average acceleration at a site is equal for all possible distributions on that site
and so a quantitative scaling of the field-strength is easier to achieve. Multiple
alternatives with equal weights are randomly chosen.

The ILG-automaton currently runs on a HP-9000-735 workstation with a
speed of about 150.000 sites per second, but there is still a variety of technical
possibilities left to improve performance.

For simplicity the vertical boundary-conditions are set to be periodical al-
though this might be unsatisfving in a quantitative simulation. The horizontal
boundary conditions are so called ‘slip-conditions’.



4 The finite element formulation

The quasistationary equation for the electrical potential u in our model prob-
lem is give by

Vi{e(x)Vu) = —g(x) in (1)

with appropriate boundary conditions, a space dependant dielectricity con-
stant € and a distributed charge density g. Multiplication of the differential
equation by an arbitrary ’test function v’ and integration over the domain §2
yields the following 'weak form’ of the differentioal equation :

Find the function u in an appropriate solution space satisfying the potential
boundary conditions so that for every test function v of an appropriate test
space V

fe(x)Vuved = [ q(x)vd® (2)

After triangulation of the domain of computation an "ansatz’ of the form

= zn: aiNi(x) (3)

i=1
1s made . a; are unknown coefficients and N; are 'shape functions’ having
support only on neighboring elements. Using the same set N;,7 = 1,....n
as test functions, a linear equation system can be formulated to define the
coefficients a; .For more details, see e.g. Zienkiewicz )7].

Usually shape functions are used being only continuous, but not continu-
ously differentiable across element edges. So the coupling field to the CA. the
flux YU is discontinous as obtained directly from the finite element solution
U. Yet a simple postprocessing, averaging nodal values and using the shape
functions N; to interpolate these nodal values. yields a continuous electrical

field E = eV,



5 The Coupling - Algorithm

The main task of the coupling algorithm is to pass and transform information
of physical properties between the sites of the ILG and the elements (here:
triangles) of the FE-domain. In our case the sites of the ILG carry a little
charge depending on the number of particles of a certain colour at a distinct
timestep. The charge-density of an element is the sum over the charge of all
sites within its area divided by this area:

1 J

area(e(?)) ;=

ge(e(7)) =

lqs(site(:n,y)) A site(z,y) € e(i) (4)

After generation of a finite element mesh a list K(x,y) is computed contain-
ing the index of the FE-element that site(x,y) belongs to. Another triple of
lists L(1,x,v), L(2,x,y) and L(3,x,y) is computed containing the three natural
coordinates of a site with respect to its element. These lists are needed to
compute efficiently the local electric field for every site at a certain timestep.
The natural or area coordinates of a point P in a triangle with nodes 1,2 and
3 (see figure 2) are defined as

area(P23)
area(123)

L{1,P) = L(2,P),L(3,P) analoguously (5)

Figure 2 : Natural coordinates in a triangle
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Note that L(i.x,v) € [0.1] for a point P(x.y) inside the element.

The advantage of these natural coordinates is the fact that they can directly
be used as weights for the computation of the electric field at a site, being is
a function of the field at the nodes of the element:

E(site(z,y)) = gﬁ(node(i)) -L(i,z,y) (6)

Combined with appropriate pointer structures which guarantees fast access
to every part of the FE-data this results in a very fast computation of the
local field at a site. The structure of the simulation algorithm is shown in the
following flow-diagram. After an initial cycle the automaton computes k-1
timesteps with a constant local electric field. After k timesteps the change of
charge in all elements is computed, k depending on the average element-size.
If this change is higher than a defined threshold (here 10 per cent) in any
element, new charge densities and dielectricities are computed and the FE-
program is called to compute a new electric field from the charge distributions
in the system.
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6 Numerical Example
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Figure 3a : Initial two-phase flow

Figure 4b : Electrical field

Flow after 100 timesteps

Figure 4a :



Figure 5

Figure 6 : Flow field after 1000 timesteps
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Figure 3 shows the initial two-phase
flow without influence of the capac-
itor and the finite element mesh for
the computation of the electrical field.
In figure 4 the flow after 100 timesteps
and contour lines of the correspond-
ing electrical potential are plotted.
Figures 5 and 6 show the continuing
process, where the positively charged
fluid flows to the left and the nega-
tively charged one to the right. After
3000 timesteps (figure 7) the main
part of the fluids has already seper-
ated, modifying the source term g on
the righthand side of the potential
equation significantly. The influence
of this separation on the electrical
field can be seen in figure Gb. In the
middle of the channel the field has
decrcased, allowing a nearly undis-
turbed vertical flow of the fluids.
The lattice consists of 250x500 sites,
the finite element mesh has 467 nodes
and 823 triangles. The total compu-
tation time for 4000 ILG timesteps
and 16 Finite Element updates was
about 2 hours on a HP9000/735.
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Figure 7a : Flow field after 3000 timesteps Figlure 7b : Electrical field



