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SUMMARY

A p-version of the finite element method and an Ap-extension is applied to a geometrically non-linear
model problem. Starting from a standard formulation in finite elasticity, some implementation details are
outlined. The robustness and efficiency of this method, as already well known for linear problems, is
demonstrated. In two numerical examples high accuracy and exponential rate of convergence in energy
are shown. The method presented can be used effectively in problems where standard low-order plane
strain elements fail to give accurate results.
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1. INTRODUCTION

In contrast to the h-version of the finite element method, where convergence is achieved by
successive (uniform or adaptively controlled) mesh refinement, the p-version keeps the mesh
fixed and increases (uniformly or selectively) the polynomial degree of the element’s shape
functions. In an Ap-version, mesh refinement and increase of the polynomial degree are
combined in a powerful method to achieve highly accurate results.

p- and hp-versions have proven to be attractive alternatives to the standard h-version for a
variety of problems in computational mechanics, like plane elasticity,"? plate problems? as well
as for incompressible flow problems.* Some of the most interesting features of p- and hp-
extensions are the following:

e p-version approximation on graded meshes has proven to give very accurate results. For
linear elliptic boundary value problems it was shown’ that the p-extension has an
exponentially converging preasymptotic range and that an hp-extension provides even
asymptotic exponential convergence in energy norm.

e p-version implementations apply hierarchical shape functions in a very natural way.
Therefore a higher-order reanalysis need not recompute the whole system matrix but can
use the results of the analysis before on the element level as well as on the system level.

¢ Higher-order shape functions are very robust against geometric distortion and a high aspect
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In our first example, a Mode I fracture problem is considered. In Reference 12 this example
was used to verify numerically that the order of singularity in the non-linear case is similar to
that in the linear case. In this Reference convergence orders for uniform and adaptive h-versions
in energy were investigated. In addition to the above, we are here concerned with the p- and hp-
extensions for the same problem. An elastic plate of thickness 1, with uniform tension load and
cracks as shown in Figure 1, was computed with the p-version FE-Code. Plane strain conditions
and a Poisson ratio of v=0-3 is assumed, and the elasticity modulus is set to E=1-0x 10°.
Symmetry boundary conditions permit investigation of only one-quarter of the domain.

Uniform meshes varying in density from 4 =a/2 up to h=a/28 and meshes with different
grading at the crack tip have been constructed to investigate s- and p-version extensions. One
graded mesh, with a geometric refinement towards the crack tip, is shown in Figure 2. The
significant difference between linear and geometrically non-linear solution of this problem is
shown best in the load-displacement curve (Figure 3) for the crack opening point A in Figure 1.
Here the vertical displacement differs by a factor of 2-8.

From an extrapolation of the results of p-version computations with p =6,7, 8, we estimate
the energy of the exact solution for the geometrically non-linear crack problem to be

U (1egy) = 5:38994 x 10° (18)

Now we are able to define a relative error in an energy measure (which is, due to the non-
linearity of the problem, no norm) by

()= ‘/ELM_J < 100% (19)
Uuex)

and to plot the log(e,) ; against log (N) curves.
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Figure 1. Crack problem
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Figure 2. Example for a graded mesh
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Figure 3. Load displacement curves
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Figure 4 shows the convergence curves for various extension processes. First comparing A-
and p-versions on uniform meshes (the two upper curves in Figure 4) shows a behaviour that
was also observed in the linear case. The convergence rate of the h-extension is half that of the
p-extension, both curves being asymptotically straight lines with a constant slope controlled by
the strength of the singularity. Higher accuracy can hardly be obtained by either of these two
extensions. The lower three curves show p-extensions on three graded meshes with a common
geometric progression factor of r=0-15 and one, two and three layers of refinement at the
crack tip. As expected from linear theory, we observe an inverted S-shape of the curves,
demonstrating an exponential preasymptotic range of convergence and a slowing to the
asymptotic range of algebraic convergence. It can be seen that a graded mesh with 16 elements
and only three layers of refinement allows us to achieve a relative error in the energy measure
of about 5 per cent with less than 200 degrees of freedom (d.o.f.). A comparison to an adaptive

h-version shows the dramatic improvement of the sip-approach. Extrapolating from the results
in Reference 12 (linear triangular elements, adaptive refinement), a level of 5 per cent in the
error measure as defined in (19) needs more than 3500 d.o.f. An accuracy of 1-4 per cent, which
is achieved in the Ap-approach just by using the same mesh and increasing the polynomial order
to p=4 (288 d.o.f.) could only be obtained with more than 100,000 degrees of freedom in an
adaptive h-version!

Another interesting aspect of this example was that the number of corrector iterations of
Newton’s method was not affected by the choice of the polynomial degree of our FE
approximation. In all computations and in each load increment the quadratic convergence of
Newton’s method could be observed.

In the second example we consider a typical situation where already for moderately high load
levels a geometrically non-linear computation is necessary. For planar problems such behaviour
is observed especially when long and beam-like structures are part of the elastic body. As it is
well known that low-order plane elements are very inaccurate in this situation, a commonly used

reladive erTof in snergy measune (21)
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Figure 4. p-version on graded meshes
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technique is to couple one-dimensional beam elements to the two-dimensional plane elements.
Although this method allows a simple modelling of the geometrically non-linear effects, it is not
possible to study stress concentrations in the transition range of the 1D- to the 2D-structure.
Nevertheless, this is the point the design engineer is most interested in. Only sophisticated
models like ‘dimensional adaptivity’'"* allow a consistent discretization of the non-linearity and
the singular solution behaviour as well. We show here that the p-method presented gives a
simple and very accurate method of computation for this problem without changing the
dimension of the model.

Geometry and boundary conditions for the structure, an electrical contact switch, are shown
in Figure 5. The structure is loaded by a horizontal and a vertical tension at the left boundary of
the head. The mesh is refined with three layers of elements at the upper re-entrant corners and at
the clamped edge at the switch’s bottom. A zoomed plot of the mesh at the transition between
head structure and body is given in Figure 6.

Results of a p-extension on this graded mesh are now compared to an h-approximation on the
refined mesh of Figure 7, computed with quadratic elements and 6836 degrees of freedom in
the standard finite element code ABAQUS. "

Figure 8 shows load-displacement curves at point 1 of Figure 5 for linear and non-linear
analyses for p =3 on the graded mesh and for the ABAQUS reference solution. Firstly, it can be
seen that the linear solution of p = 8 differs completely from the non-linear results. Considering
the solutions for the non-linear computation, the load-displacement curve for p =3 could not be
distinguished visually from that of p=8. Using the p = computation as a reference solution,
the displacement error for p=3 with 676 d..f. is only 1-2 per cent, whereas the ABAQUS-
solution, with more than ten times the number of degrees of freedom, shows a displacement
error of about 2-5 per cent.

As the homogeneous solution of the beam is a polynomial of third degree, good results
could, of course, be expected for p = 3. Yet this example demonstrates how p-elements perform
well in non-linear analysis even when having a very large aspect ratio. Here only four p-
elements at negligible computational cost were able to model the behaviour of the beam. The
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Figure 5. Electrical switch, geometry and boundary conditions
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Figure 6. Transition with refined mesh
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Figure 7. Part of h-version mesh, quadratic elements, 6836 d.o.f.s for ABAQUS reference solution
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Figure 8. Load displacement curves

Table I. Stresses at x=~0-4758 and y=0-00065 with r=0-025

Linear Nonlinear

p N o, o, T g, ay Ty

1 176 —8608 -11900 4721 —-8703 -12042 4789
2 411 -11356 -10698 3469 -7533 -5144 2180
3 676 -11639 —9885 3716 —6300 -3308 2135
4 1059 -10725 -10394 3564 -5911 -3405 2136
5 1560 -10855 —10388 3228 -6113 -3419 1833
6 2179 -10786 -10379 3161 -6092 -3413 1819
i/ 2916 -10876 —-10385 3102 -6194 -3414 1760
8 3771 —10880 -10380 3091 -6202 -3418 1759

advantage of using the same mechanical model instead of a coupling of beam elements to a 2D
model becomes even more evident when considering the singular points at the re-entrant corners
of the structure. A common ‘economic’ computation would have solved the beam problem and
then made another computation necessary to obtain stresses at these points of interest. As the p-
extension uses the same model in the whole domain, stresses and strain are immediately
available.

Results are given in Table 1. Stresses at the point with co-ordinates x= —0-4758 and
y =0-0065 corresponding to a distance of r=0-025 to the re-entrant cormner are compared, p
again varying from 1 to 8. Although very close to the singular point, excellent convergence is
observed in both the linear and the non-linear cases.

4. CONCLUSIONS

In advanced engineering the study of non-linear effects is becoming more and more part of the
business. The non-linear computational analysis, however, requires a much higher evaluation
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effort as in the corresponding linear situation. In view of this, it is very necessary to optimize
the finite element approximation in such a way that a certain limit of the discretization error can
be achieved with the lowest possible number of degrees of freedom.

In linear analysis it turns out that often the hp-version finite elements approach this challenge
best. We have discussed in this paper the main features of an Ap-version for a geometrically
non-limear model problem. It could be shown numerically that the advantages of the high
convergence rate of the p-approximation on graded meshes survive in the investigated non-
linear situation.

Of course, large displacement type non-linearities cover only a small range of the models
applied in advanced engineering. In view of this, the work at hand is only a first step to treating
more complex situations with hp-version elements.
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ratio of the elements chosen. Therefore they can readily be used to model structures of
very different inherent dimensions, like plane structures being degenerated to beam-like
structures in some parts.

e Due to the ‘richness’ of the higher-order element spaces the notorious problem of locking,
e.g. in Reissner—Mindlin-plate problems, disappears for polynomial degrees of four or
higher in a p-approximation.’

o For a rather wide class of elliptic problems,®’ rules for an a priori mesh construction are
known, making it possible to achieve a desired accuracy in one step with only minor
additional analysis before the construction of the mesh and the assignment of a necessary
polynomial degree.

e Adaptive control of an hp-extension can also make use of these a priori rules, refining a
finite element mesh only near singular points of the exact solution.?

Although most of the results in p- and hp-analysis have been achieved for linear problems, all
the features mentioned above would be even more attractive for non-linear computations. Yet
only recently a p-version for an incremental elasto—plastic problem has been considered.® The
goal of this paper is to investigate p- and hp-extensions for another non-linear model problem,
namely plane elasticity in a geometrically non-linear formulation. After a short outline of the
model in Section 2, we present a brief survey on our p-implementation. Section 3 gives a
discussion of numerical examples, demonstrating the exponential rate of convergence in
energy, the very high accuracy in displacements and stress resultants as well as the robustness
of the method.

2. GOVERNING EQUATIONS AND IMPLEMENTATION

Following the notation of Reference 10, we consider the general physical principle of virtual
work expressed by

STI(u) = OW,(u) + OW, (u) = jQ S,:0E,dQ — jn p-oudQ - L‘,, g-dudl 1)

Here, SI1(u) denotes the variation of the total potential energy of the mechanical system and
OW.(u) and dW,(u) are the variations of the internal virtual energy and the external virtual
work of the body force p and the surface force q, respectively. With QCR", n=1,2,3 we
denote the domain in its reference configuration and I' =0dQ is its boundary. On I either the
displacement is prescribed, u=i on I",, or the surface load, q=q on ', must be given;
I'=r,url,, I' NI, =&. The internal energy is characterized by the double scalar product of
the 2nd Piola stress tensor S, and the Green strain tensor E,. They can also be given by their
vector representations (here for the case of two-dimensional formulations):

ST=[S. Sy Syl (2)
E"=[E, E, E,] (3)
Using the deformation gradient F defined by

_ 14w, u, dX
dx”Fdx”[ v, 1+v,)][dy] ®

where dx and dX are infinitesimal line elements of the deformed configuration and the reference
configuration, respectively, and u,,=du/dx, the 2nd Piola stresses can be transformed into the
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true Cauchy stresses (force by unit area of the deformed configuration),

7= FSF' (5)
det(F)
or the first Piola stresses (force per unit area of the undeformed configuration),
P=FS (6)
The relationship between the Green strain and the displacement is given by
E2=%(FTF_12) N
where I, denotes the unit tensor of second order. After some manipulations we obtain
E=E,+E,=[H+:A(8)0 (8)
100 0] [fu. 0 w, 0 “ox
=llo oo 1{+=|0 u, 0 vl )
01 10] 2|u, u, v, vl||™
v
b
and
JE=[H+ A(8)]50 (10)

Note that the Green strain can be interpreted as the sum of the linear strain E, and a non-linear
pa]_t E”r' - - - - -

The relation between the stresses and strains are described by a constitutive law. In the most
simple case we can assume a linear relation given by

8,=C,:E, (11)
or in matrix representation by
S=CE (12)

where C, is the Hooke tensor of fourth order and C is the corresponding Hooke matrix.
The finite element discretization can be based on the variational formulation (1) of the
boundary value problem. Using the finite element approximation

a=)y Na, i=1l..,n (13)

where N; are shape functions and a; are the unknown parameters, the continuous problem is
turned into a finite set of non-linear algebraic equations of the form

K@a-f=0 (14)

Here, a denotes the vector of unknown parameters, K(a) is the non-linear stiffness matrix and f
is the load vector.

In our implementation the solution of the non-linear system (14) is achieved using an
incremental fully Newton—Raphson method as described, for example, in Reference 10. We
assume that the non-linear system is solved accurately enough so that only the discretization
error needs to be considered subsequently.
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The main characteristics of the stiffness matrix K(a) are correlated to the applied p-version
functions. General techniques to be used for an efficient implementation of p-elements are
described in Reference 6; an effective data structure is outlined, for example, in Reference 8.
Therefore only two main principles important for this study are discussed.

Following Reference 6, our p-version implementation uses hierarchical basis functions,
which can easily be implemented up to any desired polynomial degree. Starting with the two
linear shape functions on a standard element [—1, +1], a whole family of shape functions in
one space dimension is obtained by definition of a sequence of polynomials P, with degree i,
vanishing at the end points of the standard element.

A possible choice for P, is given by integrals of the Legendre polynomials defined by

P0y=[" L.inas
with
1 4" -1)"

L,(x)= for n=z1 15
e 2" Y n—1) dx" )

A construction of a hierarchical family of two-dimensional (and similarly three-dimensional)
elements is now quite straightforward. Standard shape functions are defined on a standard
square [-1,1]x [-1,1] in local co-ordinates {, # as tensor products of the one-dimensional
shape functions. They can be grouped intc three classes. Elements in the first group are called
basic modes, being the ‘usual’ bilinear shape functions. The second class are edge modes.
Hierarchical modes for edge n=1 (and analogously for the other edges of the standard
element) are defined by

H(§, n)=Py(E)(n+1)/2 (16)

Edge modes are identically zero on all edges except on their defining edge. The third class are
bubble modes, being given by

Hy(8, n)=P(E)P,(n), k122 (¢1))]

and disappearing on all edges of the element.

Although this classification offers a systematic way to an implementation of variable-degree
shape functions in different parts of the mesh (each element is by construction a ‘transition
element’), we are using for simplicity only a uniform polynomial degree over the entire mesh in
this study.

Because of the hierarchical nature of the shape functions, the resulting (sparse) equation
system has in general large bandwidth, making common direct solvers unsuitable. Therefore,
in our implementation a cg-solver with ILU-preconditioning'' in a sparse storage scheme is
used, being embedded into the Newton—Raphson method for the solution of the non-linear
equations.

3. NUMERICAL EXAMPLES

Our aim in this Section is to show that performance and convergence rates of the p-version for
the given geometrically non-linear problem are very similar to that known from linear elasticity.
It will be seen that, as in the linear case, the quality of the p-version strongly depends on the
mesh design.



