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Abstract

The last decade has seen the development of Lattice-
Gas (LG) schemes as a complementary if not alternative
method for the simulation of moderate Reynolds-Number
Navier-Stokes-Flow. After a short introduction we present
a specific 2D-LG algorithm for simulation of chemically re-
acting flows which runs in parallel on a workstation-cluster
and discuss simulation results and efficiency . Finally, we
point out present problems and perspectives of these al-

gorithms.

1 Introduction

Nearly all CFD-methods can be considered
as discretization methods for partial differen-
tial equations, such as finite difference, finite
volume, finite element, spectral or boundary
integral element methods. Virtually unrecog-
nized by the scientific mainstream in CFD
during the last decade, a completely differ-
ent approach to flow simulation has been de-
veloped in Computational Physics. The basic
idea of Lattice-Gas Solvers (LGS) goes back
to the Cellular Automaton (CA) concept of
John von Neumann [8]. A CA is a dynamic
system represented by a grid of arbitrary di-
mension. The state of the system is repre-
sented by the discrete states of all of its grid-
points. Dynamic development of the state of
a gridpoint is a function of the states of a
(predefined) local neighbourhood and its own
present state. The mapping of a present state
to a subsequent state is defined by time inde-
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pendent, predefined rules covering the whole
phase space of a neighbourhood. The phase
space of a single grid point is usually taken
to be very small, eventually binary. Such a
class of systems is known to show arbitrarily
complex behaviour and to simulate a vari-
ety of natural phenomena, provided that an
adequate definition of rules is given. As the
rules can be applied to the gridpoints simul-
taneously, CA algorithms are inherently par-
allelizable, an advantage that might gain sig-
nificant importance in future.

2 Description

We present simulations using a particular
member of a special class of CA, the so-
called Lattice-Gases. An extensive bibliog-
raphy about this topic can be found e.g. in
[1], a detailed description of our implementa-
tion is given in [6] which is based on ideas of
[4]. LGS use objects (’cells’) being extremely
simple compared to finite boxes or finite el-
ements. The state of a cell is usually de-
scribed by only a few bits to represent the
existence of particles. These states are sub-
ject to simple logical operations defining col-
lision and motion of particles on the grid.
Frisch, Hasslacher and Pomeau showed [3],
that under certain limitations and for spe-
cial classes of lattices in such systems large
ensembles of particles mimic fluid flow de-
scribed by the incompressible Navier-Stokes
equations. LGS are ezplicit time stepping
procedures; no equation systems have to be
solved. As there is only strictly local inter-
action between cells, LGS are inherently par-
allel, being suitable to coarse grain as well



as to fine grain parallelization. They are
very promising for dynamic flow phenom-
ena, multi component flow and flow through
geometrically very complex structures (e.g.
porous media). In this paper we examine the
possibility to model incompressible reactive
two-component flows for simulation of etch-
ing processes where the flow is influenced by
time-dependent boundaries which are sub-
ject to etching caused by one of the flow com-
ponents.

Basically the idea is very simple: A lattice-
gas system consists of boundary cells where
particles are reflected in a specified man-
ner (see e.g. [7]) and system cells on which
particles collide and travel through the sys-
tem. The introduction of particles of dif-
ferent ’colours’ representing different flow-
components does not change the mean dy-
namics given by the incompressible Navier-
Stokes equations as long as there are no ad-
ditional rules which lead to surface-tension
effects on a macroscopic scale (see [9]) and
which, for simplicity, are not included here.
Etching is introduced as an additional col-
lection of rules besides the collision-lock-up
table so that boundary cells become sys-
tem cells with a certain probability that is
weighed by the number of particles of the
etching component being present on such a
boundary cell at a given timestep. The ’etch-
ing probability’ can be scaled according to
reaction-rates of the chemical components to
be simulated.

3 Implementation

As lattice-gas algorithms allow for fine
and coarse grain parallelization we imple-
mented a domain decomposition method as
the number of computing nodes in a typ-
ical workstation-cluster is relatively small
(0(10)). The implementation was done on
a cluster of HP 9000/715/50 machines us-
ing the EXPRESS parallel environment [2]
under the programming language C. In [5] it
was shown that due to the inherent structure

of lattice gases it is possible to reduce the
communication between computing nodes in
a way that allows an efficiency of about
85 % using thirty machines. This leads to
a maximum nominal performance of about
one Gflops in our system. A collection of EX-
PRESS routines effectively hides the virtual
parallel machine from the user by means of
automatic domain decompositioning.

4 Results

As numerical examples we present simulation
results of dynamic one- and two-component
flows. Fig. 1 shows a one-component flow be-
hind an obstacle at Re ~ 250 related to the
width of the obstacle at timestep 100000.
The system consists of 1.1 x 107 cells with
about 0.9 x 10® particles. Velocity vectors
are space-averaged over blocks of 50 x 50
cells and time-averaged over 50 timesteps.
The width of the obstacle is 400 cells and
the entrance velocity in horizontal direction
is 0.0875 cells per timestep. Calculation time
for the transient flow was about 10 h using
24 machines. Figure 2 shows a Driven Cav-
ity at Re ~ 1000 where one can clearly see
secondary vortices in the lower corners (note
that the velocity vectors have unit length for
optical reasons). The overall height of the
system is 2000 cells, the inlet velocity is 0.1
cells per timestep and the velocities are time-
averaged over 20000 timesteps and space-
averaged over blocks of 40 x 40 cells. The
overall calculation time was about 15 hours
using 24 machines showing clearly that the
presented LG-method is not competible with
state-of-the-art CFD-Solvers with respect to
computational time as long as one is only in-
terested in the stationary flow problem. This
changes completely, as soon as effects are in-
cluded, which are difficult or impossible to
model with classical methods as shown in the
next example (Figure 3). It shows a time-
series of a two-component flow simulation
where the boundaries are changed by etching
from the darker component which leads to a



drastic change of the flow-dynamics during
the simulation. The Reynolds Number (re-
lated to the height of the upper left inlet) is
about 50. The dark dots represent cells where
the majority of particles belongs to the etch-
ing species. The system size is 250 x 250 cells,
the calculation time for the whole series was
about 30 minutes using one HP 9000/735/50.

5 Discussion and Conclu-
sions

The ability of lattice-gas algorithms to model
fluid flow at moderate Reyolds Numbers is
known for some years, yet the efficiency up
to now is not comparable to state-of-the-
art multi-grid methods when e.g. looking
at stationary problems. Still, the upcoming
of multi-speed lattice-gases are expected to
increase efficiency by about two orders of
magnitude besides the fact that there are
special classes of flow-problems which are
principally difficult to handle for ’classical’
numerical techniques of CFD like flows in
porous media and chemically reacting multi-
component-flows similar to the problem pre-
sented in this work.

The idea of simulating chemically reactive
multi-component-flow using lattice-gases is
generalizable to an arbitrary number of
components and can be used for moderate
Reynolds Numbers. Simple chemical reac-
tions can be mapped onto additional rules
in a quite straightforward manner.

The development of LG methods as a simu-
lation tool has just begun. Yet it is not clear,
how important this class of algorithms will
become in the next years. The efficiency of
future flow simulations depends apart from
other problems on how effectively an algo-
rithm can be mapped onto existing hard-
ware. As future high performance hardware
will surely be massively parallel, LG meth-
ods seem to offer at least a valuable extension
to classical discretization methods, which are
often hard to parallelize. The possibility to
construct a virtual parallel machine from a

workstation cluster using appropriate paral-
lelizing software offers a low cost alternative
for high performance simulations in this area.
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Flow behind an obstacle at Re ~ 250 at t= 80000

Figure 1
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Figure 2: Driven Cavity at Re ~ 1000 averaged over 20000 timesteps
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Figure 3: Etching simulation at timesteps 0, 1000, 2000, 3000, 6000 and 11000



