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Abstract—This paper describes a hierarchical overlay of a p-version finite element approximation on a
coarse mesh and an k-approximation on a geometrically independent fine mesh. The length scales of the
local problem may be some orders of magnitude below the scale of the global problem. Despite the
incompatibility of the meshes used, continuity can easily be guaranteed in the proposed method. The paper
shows how finite element meshes can be constructed adaptively on the local and the global scales, It is
demonstrated how a block-iteration allows a simple and efficient implementation of the method. Typical
fields of application and the efficiency of the method are shown in a numerical example. © 1997 Civil-

Comp Ltd and Elsevier Science Ltd.

1. INTRODUCTION

Many problems in structural technology involve the
solution of field equations being posed on domains
with very different inherent length scales. To mention
one class of problem, consider the computation of
displacement and stress fields for the simulation of
the excavation of tunnels. Near the tunnel wall, stress
and strain concentrations are to be expected, often a
physical or geometrical nonlinear analysis may be
necessary. Therefore the field near the tunnel has to
be computed accurately on a refined finite element
mesh, being able to resolve geometrical details like
soil layers or the reinforced structure of the tunnel
walls. One major problem in these computations is
the definition of boundary conditions. If the model is
chosen to be too small, significant error may be
caused by the introduction of an artifical outer
boundary. A large model, on the other hand, will
result in inacceptable computation time. Another
field of application for a coupling of local global
solutions are large steel structures, where geometri-
cally complex local connections have to be analysed,
whereas an external load cannot be defined directly
at the connection, but has to be imposed onto the
global structure. Several authors (see, e.g. [3, 4, 7])
have suggested coupling a finite element computation
for the near field to a boundary element discretization
for the far field of the local-global problem. As an
alternative, a hierarchical coupling of a standard
h-approximation for the local field with a p-approxi-
mation on the global field shall be discussed here. The
basic ideas of this “Ap-domain-decomposition’ have
been presented in Refs [8, 9]. This method is similar
to the “s-version” of the finite element method
developed independently by Fish [2]. In the next
section the construction of the finite element

approximation for the hierarchical overlay is
discussed in more detail. Section 3 derives indicators
for an adaptive mesh design, using also the
hierarchical nature of the method. It turns out that
under certain assumptions this mesh adaptation can
be performed rather independently on the fine and
coarse meshes.

In Section 4 the algorithmic details of the suggested
approach are discussed. Besides a direct implemen-
tation as presented in Ref. [8], the method can also
be implemented as an iteration between coarse and
fine mesh computation in the sense of a block
Gauss—Seidel-technique. Coupling terms for this
formulation are strains computed on one mesh which
are then imposed as loading pre-strains on the second
mesh.

In Section 5 the efficiency and accuracy of the
method is demonstrated by a numerical example.

2. THE HIERARCHICAL DOMAIN DECOMPOSITION

To explain the basic concepts, consider Fig. 1 with
a geometrically incompatible finite element mesh. It
is important, that the coarse mesh is also defined
“below” the fine mesh. In our example, two (coarse)
quadrilaterals are covered by the elements of the local
mesh. Being precise, there exists a triangulation
T, = [t;, iel] of a domain Q,. A finite element space
Spo, over T is defined as the set of continuous
functions being piecewise polynomials of order p over
each element. For the exact definition of a p-version
finite element space see for example Ref. [11], for
implementation details we refer to Ref. [6]. Further
on we assume that there exists a subset [,, =/, with
a domain €, =U{#,, ieh,} and define a second
triangulation T> = {f,; iel} of &, so that for every
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Fig. 1. Geometrically incompatible finite element mesh.

t,;€T, there exists a #; with ;< 1,. This condition
guarantees that a fine element does not overlap edges
of the coarse mesh.

Sho, shall denote a “‘standard” finite element
approximation using for example bilinear shape
functions on Ty

Let

Sia={veSialt =0 on I} (N
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Next we eliminate linear dependencies of the k- and
the p-space defining

20 =Sp,0,/ 54,0, 2
Now the finite element space of the hierarchical
overlay is constructed by

Sio = Spa,® 5%, 3)

Every element v = v, + vs€S,, is defined as the
hierarchical sum of an A- and p-function being
continuous by construction due to the homogeneous
boundary values of the A-functions at the transition
of the coarse to the fine mesh.

To set up a boundary value problem, let B(u, v) be
a bilinear form and f(v) be a linear load functional.

In the weak form of the boundary value problem,
a function w. satisfying geometric boundary con-
ditions has to be found, so that

Blu..,v) =f(v) YveH 4)

with an appropriate test space H.

As usual, the finite element approximation is then
defined as the solution of

B(ure,, V) = f(V) YVES,. )
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Fig. 2. Example plate.
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Fig. 3. Global mesh.

Using the hierarchical nature of §,,, eqn (5) is
equivalent to the solution of the following problem:

Find wpe=u + uw,€8, so that for every
v €Sha, V,€Spa,
B(u, + un, 1) = f(1p)
B(MF, + U, Us) =f(vh)- (6)

The resulting linear equation system also reflects
the hierarchical nature of this formulation

App Aph Xp _ j;:‘
(g R)E)-G) o

An efficient strategy to solve this equation system
without an explicit computation of the coupling
matrix A, will be described in Section 4.

3. ADAPTIVE MESH CONSTRUCTION

For the class of problems considered in the
Introduction we can assume that an adaptive mesh
refinement will be especially important in the near
field, e.g. in Q..

The following two questions shall be addressed in
this section:

¢ How can the discretisation error be estimated in
?

e Is it possible to construct a mesh on Q,, without
having to solve the coupled hierarchical system in
every adaptation step?

Let us assume that a first approximation u, has
already been computed. For u, we then get

B(us, v4) = f(on) — B(uy,01) @)

for every v,€S} g, This condition is yet just a
discretization of the following weakly formulated
boundary value on the local domain €;:

Find

U, on Qz, Uy |i"1 = O

and
B(H! B U) =f(v)=:f(v) hi B(“ﬂ! U) (9)

for all functions v of the test space.

Problem (8) is now a ‘“standard™ finite element
approximation with the usual low order shape
functions to the boundary value problem (9).
Therefore the approximation error of (8) vs (9) can
be estimated by well-known a posteriori procedures,
e.g. by the “jump”-indicators of Babuska and Miller
[1], by residual indicators of Johnson and Hansbo [5]
or by stress smoothing as used in the Zienkiewicz—
Zhu error estimation.

The question remains how the solution u, in eqn (9)
on £, is related to the exact solution .. of the original
problem (4).

We consider the boundary value problem (4)
restricted to €.

B@#,v) =f(v) with d=u, on I,

(10)
and define wy=i — u,.
Then

B(uy, v) = f(v) — B(u,, v) with wo=wu, —u, on I,.
(1

Comparing eqns (9) and (11) we find that u,
satisfies instead of the exact boundary condition
u = u,x — 1, the disturbed boundary condition u = 0
on I'.

Thus, in an adaptive algorithm, besides the “usual’
error in £, the disturbed boundary condition has to
be controlled. An adaptive mesh refinement can now
be performed in the following algorithm:

(1) construct initial meshes on €, and ., set
i=0,j=0

(2) solve the coupled problem for uf?, u{;

(3) consider the decoupled sub-problem on ,
B(us, va) = flon) — B, va) with  w)r, =0,
construct a sequence of A-approximations u;, in
an adaptive mesh refinement on €;

(4) set i=i+ 1;j=j+ 1, and solve the coupled
problem with the mesh constructed in step 3
for Q, to compute ", u$";

(5) if the difference of u}” and uY~" on I'; is small
enough: STOP, else GOTO 3.
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Fig. 4. Local-global mesh.
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Fig. 5. Convergence of energy.
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Fig. 6. Error in energy.

Fig. 7. Deformed structure.
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4. IMPLEMENTATION

The solution of the coupled equation system 7 can
be performed efficiently in a block Gauss—Seidel-iter-
ation. The coupling matrices A, and A;,, respect-
ively, are brought to the righthand side of the
equation systems and are considered together with
the corresponding iterates as additional load terms

1) — )
Apﬁx; _f.; i Ahp Xy
T 1
Apx? V= fi — Ay - x50, (12)

The terms A, - xi” and Aj, - x'* " can be interpreted
as load functionals from negative prestrains resulting
from the displacement fields x{” and x¥"*", respect-

ively. To see this, define

£o=L'N¢;'J€;‘ (13)

to be a prestrain correspending to a given
displacement field x,, /V, being the matrix of all shape

functions and L denoting the strain-operator. The
discrete load vector resulting from ¢ is given by

fe) = f (L N)D-g-1.-dQ (14)

D being the elasticity matrix. Inserting eqn (13) in eqn
(14) and using the B-matrix in the standard notation
as the strain operator L applied to the matrix of the
shape-functions

f(£o)=j-BI'D-Bh-z,'dQ-xh. (15)
4]

We can now identify the product A, - x;
A,,,,-x,,=jB}-D-B,,-t,-dﬂ-xh. (16)
{43

The importance of this observation is that it is
obviously not necessary to compute the coupling
matrices explicitly. Only the product with the
corresponding displacement vectors is involved in
the iteration (12). The consequence is, that the
hierarchical local-global finite element approxi-
mation can be implemented around a given finite
element program. The only additional program
module is an interpolation of strains from one mesh
to the other and the possibility to incorporate
prestrains as variable loads.

5. AN EXAMPLE

Figure 2 shows a plate with a connection at the
upper right edge. The load is imposed by tractions at
the boundaries of the holes in the connection. The
total structure is fixed at the left and bottom
boundary, so the local solution, which is determined
essentially by the influence of the load and the shape
of the holes interacts with the global solution on a
length scale being two orders of magnitude over the
scale of the holes. The global finite element mesh is
shown in Fig. 3, Fig. 4 giving a zoomed detail of the
composed, geometrically incompatible mesh. The
convergence of the block Gauss—Seidel-iteration can
be seen from Figs 5 and 6, the first showing the
convergence of the strain energy, the second the
difference of iterated strain energies compared to the
final solution. It can be seen, that only four iterations
are necessary to reduce the error to less than 1%.

Finally, Fig. 7 shows the total displacement field as
the sum of the p- and the s-approximation near the
connection. For demonstration reasons, every p-
element is devided into three by three subelements in
this picture. It can clearly be seen that the total
displacement is continuous at the transition of the
global to the local mesh, as it is guaranteed by
construction of the finite element space.
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