A parallel p-version FE-approach for structural engineering

Martin Riicker, Manfred Krafczyk, Ernst Rank

LS Bauinformatik, Department of Civil Engineering and Surveying
Technical University of Munich, Munich, Germany

Abstract

This paper describes a parallel p-version FEM approach
for civil and structural engineering. After a brief introduc-
tion to the p-version of the finite element method we will
consider a condensation technique for the interior degrees
of freedom which decreases the size of the global equation
system essentially. The implementation of the parallel ap-
proach described in the third part is concentrated on the
more time consuming element based computation, the so-
lution of the global equation systems is sequential. Finally,
the efficiency of the implemented algorithm is shown in
two numerical examples.

1 Introduction

The p-version of the finite element method has been in-
vestigated very intensively during the past 15 years and
it has turned out to be superior to the classical h-version
in a significant number of fields of practical importance.
It has especially offered advantage when the finite element
model is to be coupled to a structural model being defined
in a CAD-environment. We will discuss results of the Es-
prit project INSIDE (Ref.No. 20216) [?], where a parallel
p-version finite element code is implemented as one of sev-
eral tasks in a civil engineering CAD-environment.

2 The p-version of FEM

While in the standard h-version of the finite element
method the mesh is refined to achieve convergence, the
polynomial degree of the shape functions remains un-
changed. Usually low order approximation of degree p=1
or p=2 is chosen. The p-version leaves the mesh un-
changed and increases the polynomial degree of the shape
functions locally or globally. In most implementations a
hierarchical set of shape functions is applied, providing a
simple and consistent facility of implementation in 1-, 2-
or 3-dimensional analysis. Oscillations in the approximate
solution, which could be expected when working with high
order shape functions can be avoided by using properly
designed meshes. Guidelines to construct these meshes
a priori can often be given much easier for the p-version
than for the h-version [?]. For linear elliptic problems it

was also proven mathematically that a sequence of meshes
can be constructed so that the approximation error only
depends on the polynomial degree p and not on the order
of singularities in the exact solution.

Following [?], our p-version implementation uses hierarchi-
cal basis functions, which can easily be implemented up
to any desired polynomial degree. Starting with the two
linear shape functions on a standard element [-1,+1], a
whole family of shape functions in one space dimension
is obtained by definition of a sequence of polynomials P;
with degree 7 satisfying the condition

{Pi(Q) |i>2,Ce[-1L1],R(-1)=F(1)=0} (1)

A possible choice for F; is given by integrals of the Legen-
dre polynomials defined by

¢
() = /;=1 Lia(t)dt (@)
with
_ 1 d*w® =
@) = =i~ ar

A hierarchical basis has an immediate consequence on the
structure of the resulting stiffness matrix. If equations
are ordered so that all linear modes get numbers 1 to nq,
all quadratic modes get numbers n; + 1 to ny and so on,
stiffness matrices corresponding to polynomial order 1 to
p—1 are submatrices of the stiffness matrix corresponding
to polynomial order p.

A construction of a hierarchical family of two-dimensional
(and similarly three-dimensional) elements is quite
straightforward. Standard shape functions are defined on
a standard square [—1,1] x[—1, 1] in local coordinates ¢, n
by a tensor product calculation. They can be grouped into
three classes. Elements in the first group are called basic
modes being the 'usual’ bilinear shape functions. The sec-
ond class are edge modes. Hierarchical modes for edge
n = 1 (and analogously for the other edges of the stan-
dard element) are defined by

Hi(¢,n) = PO +1)/2 (4)

Edge modes are identically zero on all edges except on
their defining edge.
The third class are bubble modes being given by

for n>1 (3)

and disappearing on all edges of the element. Figure 7?7
shows a linear nodal mode, an edge mode of degree three
and a bubble mode of degree five.

nodal modes bubble modes

edge modes

Figure 1: Shape functions for quadrilateral elements

Another main difference between h- and p-version finite-
element methods lies in mapping requirements. Because
in the p-version the element size is not reduced as the
degrees of freedom are increased the description of the ge-
ometry must be independent of the number of elements.
This results in the necessity to construct elements with
an exact representation of the boundary. The isoparamet-
ric mapping, used in standard finite-element formulations,
can be seen as a special case of mapping with the blending
funetion method (see e.g. [?, ?]). Following these ideas ele-
ment boundaries can be implemented as arbitrarily curved
edges.

3 Parallelization of the p-version
finite element analysis

Typically, the FEM computation can be divided into sev-
eral subprocesses requiring different amounts of time:

o pre-processing : Tpre
e computation of element stiffness matrices : Teomp
e solution of the generated equation system : Tsory

o post-processing : Tpost

In contrast to the h-version, in the p-version finite ele-
ment method the computation of the element stiffness ma-
trices and the post-processing usually takes much more
time than solving the global equation system (Teomp >
Tsotvs Tpost > Tsor). Thus, in the case of high polyno-
mial degrees, the parallelization can be concentrated on
the element computations in the presolution phase and
on postprocessing and use a sequential algorithm for the
remaining equation solution.

3.1 The primal subdomain implementa-
tion (PSI) for the p-version with high
p-degrees

The implemented domain decomposition for high p-
degrees (p > 4) is a variant of the PSI-algorithm pre-
sented in {?]. To describe this algorithm, let us consider a
two-level domain decomposition. On the first level, the fi-
nite element mesh) is decomposed into n non-overlapping
subdomains (2;, j = 1,...,n), each consisting of a set
of elements being identified with non-overlapping subdo-
mains of level two (Q;, 7 = 1,...
the first level one subdomain are numbered first and so

,8). All elements of

on. Each p-element has nodal-, edge- and bubble-modes
and a numbering of all degrees of freedom can be chosen
so that all bubble modes for all elements get the lowest
numbers, whereas all nodal- and edge modes are num-
bered last. Note that these modes correspond to ’inter-
face nodes’ in a domain decomposition for the h-version,
whereas they do not necessarily correspond to interfaces
of the level one subdomains Q.

Now, the equation of equilibrium Ku = f for the p-version
finite element method can be written as

KP 0 0 EP [uP] s
0 Kl(f) 0 bez) u$2} f(2
: . : > = (6)
0 0 KD RS || ul ffs’
Kézl) K(z) Kéf) Ky Up fo
with
8 ik 8
K=Y K2 ad f=379 (7?7 ab)
j=1 i=1
where
I?fgb) — B(J K(J}Béfn‘ \ K(J) K(J)BEJ), (?? a_d)
R - 0D, 7P = 550,

Kf;’) correspond to the bubble modes and Kég) to the
nodal and edge modes of Q;, while K, K9 correspond
to the interaction of these mode groups. I?gg), I?fg), I?éf)
and T,J(’) are the element matrices and vectors, respectively,
and Bé’) is the connectivity matrix of element j mapping
local nodal and edge mode numbers to their global num-
bering,.

The concept behind this p-version PSI is exactly the same
as that of the corresponding h-version implementation,
i.e. to reduce the initial system of equations to a sys-
tem comprising only the edge and nodal d.o.f.. Apply-
ing a static condensation to the subdomain internal d.o.f.,

Equation (??) can be transformed into the following prob-
lem for the nodal and edge unknowns:

Ky — ZKM W™ K(J) up =

1

fb Z K(J)K Nt .?) (9)

Sup = fo (10)

where

& 8

§=Y 59 =3 BY g B{ (11)
j=1 i=1
sV =k - KPEP™ kP (12)
fo=fo=- Y &P 1D (13)
j=1

Matrix S is the Schur complement of K, in K and each
subdomain matrix S corresponds to a local static con-
densation operator or a local Schur complement.

Note now that all element Schur complements can be
formed in parallel without any communication, so that for
this reduction operation s processors (s is the number of
elements) could be used. Yet, usually s is greater than the
number of available processors n, so elements are grouped
together to subdomains of level one and all Schur comple-
ments for elements in one of these subdomains computed
sequentially by one processor.

As for high p-degrees bubble modes take the major part
of all degrees of freedom, the size reduction of this ele-
ment condensation is very significant. Furthermore, it was
proven e.g. in [?], that this Schur complement is an ex-
cellent preconditioning for the remaining equation system,
being solved sequentially in our implementation and tak-
ing only a minor part of the overall computational time.
We use a PCG-solver for this final solution, either with
incomplete Cholesky preconditioning or with simple diag-
onal scaling.

3.2 Implementation

master
| read input files]
| start n slaves | (slave 1)- - -(slave i} - [slave n)
wait for all j(i) ESM read input files
of alt Q; nodes and elements of Q;
for all jii)
compute all ESM K:,', i

and LV fjof Q;

{or all subdomains §

receive ji) ESM Kj jand LV f; (
of Qjf

send all ESM Kjjand LV fy
to master

assemble all ESM Kjjand LV fi
into global stiffness matrix K
and global load vector f

wat for solution vector x;
of £z from master

I Solvea Kx=f |

for all subdemnains /

send xj of Q; to slave J | él

end
master

receive xj of Q;f |

| postprocessing for Qf |

| write cutput files for Qf |

end end
slave i slave n

end
slave 1

ESM : element stiffness matrices
LV :element load vector
== : communication

Figure 2: The parallel algorithm

The parallel algorithm is depicted in figure ??. Our im-
plementation is based on the imessage passing software
PVM [?]. The two different process types, ‘master’ and
‘slave’ program, are unified into one code. After reading
the global input files (geometry, domain decomposition,
loading etc.) the master starts one slave process for each
subdomain. The slaves select all data from the input files
being relevant for their subdomain and start computation
of the corresponding element matrices and load vectors.
The slaves do their computation completely independantly
without any communication, yielding a perfectly parallel
computation in this phase. After elimination of the in-
terior degrees of freedom each slave process sends its el-
ement matrices and load vectors to the master process,
which assembles and solves the global equation system in
the sequential part of the algorithm. The master process
finishes after sending all element solution vectors of each
subdomain to the corresponding slave processes. Just as
the presolution phase, the postprocessing for each subdo-
main requires no communication between slaves or slaves
and master. A final backward substitution for the interior
degrees of freedom ends the computation for each slave.

4 Numerical examples

The efficiency tests are performed on a workstation clus-
ter consisting of eight HP9000/C 100 (7x64 Mb RAM,

1x128 Mb RAM) connected by a standard 10 Mbit-
Ethernet. The reference computations are made on the
same workstation type with 256 Mb RAM. The computa-
tional times in the diagrams are given in real time. The
absolute speedup S(n) is defined by

T'(1) :computational time of the sequential program
T'(n) :computational time of the parallel program using
N Processors

and the absolute efficiency E(n) is defined by

(see [?]). Note that the efficiency for the implemented
parallel algorithm is machine independent, because using
a more powerful machine leeds to a speedup in the se-
quentiell part as well as in the parallel part. Due to the
minimized communication and parallel overhead the dif-
ference in speed between the sequential and the parallel
algorithm running on one single processor can be ignored.

In the following examples the variation of the number
of subdomains/processes and the polynomial degree are
studied. The domain decomposition was done using the
public domain software METIS [?]. Note that the decreas-
ing number of subdomains for high polynomial degrees is
restricted by the memory of the ’slave’ processors. The
computational times for one subdomain are computed on
a single processor. For two to seven subdomains each pro-
cess runs on its own processor. In case of eight subdomains
the master process and one slave process share one proces-
sor. Because of the fact that the time where both master
and slave are in an active computing mode is very small,
the influence on the computational speed is negligible.

The two examples are both plate problems, which are the
main field of applications, but a comparable behaviour of
the algorithm for plain stress/plain strain problems is ex-
pected. For all computations the full ansatz space is used.

4.1 The rhombic plate

The system of this extensively studied benchmark test
[?, 7] is depicted in figure ??7. The finite element mesh
consists of 144 regular quadrilateral elements. The mesh
and an example for the domain decomposition are shown
in figure 77. A more regular domain decomposition than
the one shown in the example is possible but for the im-
plemented algorithm of no importance.

/

Figure 3: Rhombic plate — system

! I=1.0

voricas 188 o2
quadriiaterals 144 1% 18 18 8

rhomi44

Figure 4: Rhombic plate — Finite element mesh and do-
main decomposition for 8 subdomains (by METIS [?])

Table 7?7 shows the number of degrees of freedom, the
computational time, and the memory used for two dif-
ferent sequential program versions, the standard version
and special version for large problems. The second ’low
memory’ version does not keep the reduced element stiff-
ness matrices after assembly to the global stiffness matrix
for post-processing. But computing the element matrices
twice leads to an inacceptable computational time.

standard low memory
p dof time | memory time memory
[s] [Mb] [s] [MB]
4 7011 25.41 10.26 31.10 7.11
51 10923 47.57 15.68 61.30 9.20
6| 15699 83.87 23.63 114.07 11.68
71 21339 | 145.04 34.87 213.46 14.55
8| 27843 | 252.96 50.30 382.05 17.82
9 35211 | 44745 70.93 716.90 21.50
10 | 43443 | 759.71 97.87 || 1277.61 25.60
11| 52539 | 1344.43 | 132.39 || 2346.70 30.12
12 | 62499 | 2147.05 | 175.85 || 3847.64 35.07
13 | 73323 | 3528.39 | 220.71 || 6289.21 40.47
14 | 85011 - - || 9748.10 46.32
15 | 97563 = — || 14891.34 52.64
16 | 110979 - - || 22015.68 59.44
17 | 125259 - — || 31339.54 66.73

Table 1: Rhombic plate — Degrees of freedom, time, and
memory for various polynomial degrees — sequential com-
putation

rhom, 144 quads
T T

time [s]

1 2 3 4 5
number of subdomains

Figure 5: Rhombic plate — Computational time

rhom, 144 quads
T T T

o T‘Eﬂ'ﬂ:‘ﬂﬂ
ERLTEERE

38

speed up (absolule)

5
number of subdomains

Figure 6: Rhombic plate — Speedup (absolute)

Regarding figure 77 it can be observed that the compu-
tational time for the parallel computation decreases with
increasing number of subdomains for a moderate polyno-
mial degree.

As expected the speedup increases with the polynomial
degree. Because the computation on element level is per-
fectly parallelized the limit of computational time is basi-
cally specified by the sequential part.

rhom, 144 quads
100 : T

efficiency {absoluta) [*]

. : .
2 3

5
number of subdomains

Figure 7: Rhombic plate — Efficiency (absolute)

4.2 A car park

The second example is the complex plate of a car park.
The plate is supported by 30 columns modelled by mesh
independant elastic foundations and several soft simple
supported edges (see figure 77).

“ewe0l
t=d0an

£ = 1240000052

Belan B25

LF Elgengewlcht

parkhaus

s M S R S A N S R S A S S A

Figure 8: Car park — system

The finite element mesh with 104 quadrilateral elements
and an example for the domain decomposition for 8 sub-
domains is shown in figure 77. The computational times,
speedup and efficiency plots given in figures 77, 7?7 and
77 for the complex ’real life’ example verify the results of
the previous, more academic example. For higher poly-
nomial degrees (p> 8) and a small number of subdomains
(1-3) the speedup is less than theoretically expected. This
effect results from the imperfect load balancing of the do-
main decomposition. The subdomains are created only
with respect to an equal number of elements, not consid-
ering the computational effort for columns. Yet, the effort
for numerical integration of elements containing columns
is much higher than for other elements, resulting in this
imbalance for a low number of processors.

vorticas 129) = 21
quadrialorals 104 1§ 13 1

parkhaus_pS

Figure 9: Car park — Finite element mesh and domain
decomposition for 8 subdomains (by METIS [?])

P dof tg Inemory to tq tg

[s] [Mb] [s] [s] [s]
6 | 11307 72.6 20.732 546 | 41.1 | 34.3
7| 15375 | 119.9 28.702 83.8 | H5.6 | 459
8 | 20067 | 200.5 39.696 | 134.0| 8221 61.5
9| 25383 | 350.5 55.216 | 245.7 | 127.3 | 90.6
10 | 31323 | 592.3 75.601 | 400.6 | 195.7 | 134.7
11 | 37887 | 1027.3 | 101.573 | 655.6 | 315.3 | 211.8
12 | 45075 | 1631.6 | 134.118 | 1011.5 | 497.5 | 318.0
13 | 52887 | 2588.3 | 174.306 — | 758.7 | 475.0

Table 2: Degrees of freedom, time, and memory for the
Car park example for the sequential computation and
computational time for parallel computation with 2, 4,
and 8 subdomains/processors

References

[1] http://www.inf.bauwesen.tu-
muenchen.de/projekte/inside/start.htm

[2] B. Szabé: ”Mesh design for the p-version of the finite
element method”, Comp. Meth. in Applied Mech. and
Eng., 55:181-197, 1986.

parkhaus, 104 quads, 30 columns
T T

time [s]

. s?-._,_r_

&
M
4
i
i

] 7 8
number of subdomains

Figure 10: Car park — Computational time

parkhaus, 104 quads, 30 columns
T T

]
3
)
E)
3
@
#
g ‘) H i i
2 3 5 7 8
number of subdomains
Figure 11: Car park — Speedup (absolute)
parkhaus, 104 quads, 30 columns
100 T T T
i i p=6 44—
g
T
3
2
Gl
g
:%
20
5 . ; ;

2 3 4 5 8 7 8
number of subdomains

Figure 12: Car park — Efficiency (absolute)

[3] B. Szabd and 1. Babudka: Finite Element Analysis,
Wiley, Chichester, 1990.

[4] W.J. Gordon and Ch.A. Hall: ”Construction of
Curvilinear Co-ordinate Systems and Applications to
Mesh Generation”, International Journal for Numer-
ical Methods in Engineering, Vol. 7:461-477, 1973

[5] S. Bitzarakis, M. Papadrakakis, and D. Charmpis:
?Parallel Solvers — Performance assessment”, Esprit
Project INSIDE, Report D&1a, 1997.

[6] M. Ainsworth: ”A preconditioner based on domain
decomposition for hp-FE approximation on quasi-
uniform meshes”, SIAM J. Num. Anal., 33, No. 4:
1358-1376, 1996.

[7] http://www.epm.ornl.gov/pvm

[8] http://www-users.cs.umn.edu/ karypis/
metis/metis.html

(9]

[10]

[11]

T. Ungerer: ”Parallelrechner und parallele Program-
mierung”, Spektrum Akademischer Verlag, Heidel-
berg, Berlin, 1997.

E. Stein, K.H. Lambertz, L. Plank, and A. Reisch:
”Element Benchmark Rhombusplatte 60°, Ergebnisse
fiir: DKT-Dreieckselement, DKT-Viereckselement,
Mindlin-Element mit reduziertem Schubansatz”,
Technical Report, Universitit Hannover, Institut fiir
Baumechanik und Numerische Mechanik, 1987.

I. Babugka and T. Scapolla: ”Benchmark computa-
tion and performance evaluation for a rhombic plate
bending problem”. International Journal for Numer-
ical Methods in Engineering, 18:323-341, 1982.

