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Abstract. The paper describes a hierarchical overlay of a p—version finite element ap-
prozimation on a coarse mesh and an h-approzimation on a geometrically independent
fine mesh for elastic—plastic problems. The length scales of the local, physically nonlinear
problem may be some orders of magnitude below the scale of the global, linear problem.
Despite the incompatibility of the meshes used, continuity can easily be guaranteed in the
proposed method. We will show in this paper how the resulting global nonlinear equation
system can be solved by an iteration using a Block Gauss—Seidel scheme combined with a
modified Newton—Raphson method. It is demonstrated that the bearing capacity of a slope
under vertical loading significantly depends on the size of the computational domain which

can be discretized with the presented method resulting in only o few additional degrees of
freedom.
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1 Introduction

The numerical treatment of structural problems is often difficult if the solution is affected
by phenomena on different length scales. In simulating these multiscale problems it is
essential to find a discretization that equally reflects all aspects of the problem with a
sufficient accuracy. As a typical example consider the computation of the load bearing
capacity of a slope under a local loading. One precondition for an accurate simulation
of this problem is the adequate choice of the numerical model, i.e. the definition of the
domain of computation with its boundary conditions as well as the consideration of the
local nonlinear behaviour of the soil. If the domain of computation is chosen to be too
small, significant errors may be caused by the introduction of an artificial outer boundary.
A large model, on the other hand, may result in inacceptable computation time. The
hp-d—method, which was presented for linear problems earlier [1],[2], will be extended
here to locally elastic-plastic behaviour and is intended as an alternative to well-known
strategies coupling a local finite element computation to a boundary element computation
for the exterior problem [4],[5]. Our method combines the p—method for the discretization
of the large—scale problem with an h-method for the local solution. Thus, the advantageous
properties of both standard procedures may be optimally exploited.

2 The hierarchical domain decomposition

To explain the basic idea of the hp-d—method, consider the example of a strip footing
near a slope under vertical loading (Figure 1). The nonlinear behaviour of the material is
assumed to be elastic—perfectly—plastic, see section 3. Two meshes, a base mesh consisting
of only 8 p—elements on €, and an overlay mesh with 523 eight-noded elements on €2,
are chosen to discretize the slope (see Figure 2). Thus, the domain  is splitted into two
overlapping subdomains 2 = Q U Q,. The finite element solution upg is now defined as
the hierarchical sum of a p—version approximation on the base mesh u; and an h-version
approximation on the overlay mesh u,. C%-continuity for urz can be guaranteed just by
imposing homogenous boundary conditions on Iy, for u, and on Ty, for u,.
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Figure 1: Strip footing near a slope under vertical loading

The decomposition of the domain € is chosen such that plastic strains only occur in the
subdomain €2, \ €2, i.e. in that part of the structure in which only an h—approximation is



ECCM 99, Miinchen, Germany

base mesh overlay mesh
I‘bo

7

il
i
T
LA

SAA
L

2 3

ANV
SO

]
]
Z77 TN
Qb Fob AN L RN

hp-d approximation

Figure 2: Hierarchical domain decomposition with partial overlay of base and overlay
mesh.

performed. Due to this domain decomposition the governing nonlinear equation system
exhibits the following structure

Kbb Kbo A'I.lb _ 0 (1)
K?,:, (n+1)Koo(u) Auo (n+1)fo - (n+1)go(u)

with the submatrices Ky, Kj, reflecting linear elastic behaviour whereas the nonlinear
behaviour of the structure is considered by the submatrix K,,(u). ®*Vf, is the load
vector of the (n + 1)-th load step being only applied on the domain 2, and **Vg (u)
are the internal forces which have to be in equilibrium with the external forces. The
superscript (n + 1) denotes the sequence of load steps being applied for an incremental
solution of the nonlinear problem. The finite element solution for one load step is given
by the hierarchical sum

AUFE = Aub + A'llo (2)

of the solution Au, on the base mesh and the solution on the overlay mesh Au,.

We will consider now two different strategies to solving the nonlinear equation system
(1). The first strategy will be refered to as the ’direct’ solution. Therefore the static
condensation of Au, is applied to the system (1) resulting in the Schur-complement

(VK o) — Ki, Ky K] Au, = H0F, 00 g (u) (3)

which may be solved in each load step with a Newton—-Raphson iteration scheme. Note
that Au, has to be condensed only once. The resulting nonlinear equation system (3) is
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therefore reduced in size resulting in a significant acceleration of the solution phase of the
overall system (1).

Although this ’direct’ solution of system (1) would be a very efficient strategy, we have
chosen a Block Gauss—Seidel iteration which can be written as

Kbb Allgi+1) = _ Kbo Au,(,i) (4)
(DK Au,(,Hl) = (+0f, _ (n+1)go(u) _ Kg; Augi+]_) <

The benefit of these iteration scheme can be seen by studying the coupling terms, i.e.

Kbo A'llg,i) = f

BY CB,dQ Aul = f B! Ce dQ, (5)
QN0

QN2

C being the elasticity matrix and B,,B; the B-matrices in the standard notation as the
strain operator L applied to the matrices of the shape functions N, N, of the base and the
overlay mesh, respectively. The coupling term (5) can therefore be interpreted as a load
functional from negative prestrains resulting from the displacement field Auf. Because
of the domain decomposition, where plastic strains can occur only in the domain £, \ £,
the so—called prestrains in equation (5) are pure elastic. After having found a solution
with the Block Gauss—Seidel iteration, the local nonlinear behaviour of the structure on
the domain €2, \ €2, can be considered with a Newton—Raphson scheme.

The advantage of this second iteration scheme is that two different FEM—codes may be
coupled easily. For our investigation one program [2] was used to compute the p—version
solution on the base mesh whereas another one [3] was employed to consider the local
nonlinear behaviour of the computational domain. The overall solution technique is
illustrated in Figure 3.

Load increment

Block Gauss—Seidel
iteration

Newton iteration

Figure 3: Solution of the nonlinear equation system
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3 Formulation of the elastoplastic material model

The domain of the structure is divided into the two parts 2, (base mesh) and Q, (overlay
mesh) with a common transmission zone §2; N §),. Plastic flow is restricted to occur only
in £,\Qs. The nonlinear material behaviour is computed by the FEM—code ISARES [3].

The nonlinear material model is based on small deformations. Hence, the linearized kine-
matic relations are given by

1 T
e=> (Vu+(vu)T). (6)
The strain can be splitted into an elastic and a plastic part
€ = E°4+¢°, (7)

where the dot denote strain rates according to the applied Prandtl-Reuf plasticity model.
The plastic deformations are defined by an associated flow rule in the form

. _0f

E=Az-- (8)
Considering the consistency condition
of
df = —ido =
f=2ldo =0, ©
the plastic multiplier A is given by
of
. % .o
A= —ﬁ . ar (10)
0o~ Oo

in which C denotes the elastic material tensor. A modified hyperbolic Drucker-Prager
flow function was used in order to get rid of numerical difficulties in the vicinity of the
apex of the flow cone during the stress integration algorithm, see Fig. 4. Therefore, the
direction of plastic flow remains well defined. The corresponding flow function reads

1

f=(F+om)" +arh—k <0, (11)

The first invariant of the stress tensor and the second invariant of the stress deviator
tensor are given by

Il = tI'[O'] = o-ij 6” N (12)
Jo = ttr[[devo|deve]] = 1oi04.

The parameters oy, k,n and ops are used to determine the shape of the flow surface.
For the stress integration algorithm a forward Euler scheme with subincrementation was

applied.
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Figure 4: Graphical representation of the hyperbolic flow function

4 A numerical example

As a numerical example, consider the computation of the load bearing capacity of a slope
under a local loading (Figure 1). Three different discretizations will be explored: a typical
h—version discretization with 523 eight-noded quadrilateral elements (Figure 5) and two
hp-d—version meshes varying only in the size of the base mesh, consisting of 8 p—elements
with p = 4 (Figure 6 and 7). The overlay mesh of the two Ap-d discretizations coincides
with the h—version mesh. The displacements normal to the artificial boundary of the
system are suppressed for all three discretizations. Additionally kinematic suppressions
are formulated at the boundaries [y, and I',, where the displacements are fixed in order
to obtain C%—continuity of the approximation upg. The number of degrees of freedom for
the h—version mesh is 3130 whereas the number of additional degrees of freedom from the
p-elements is 129. The number and size of load increments coincides for all computations.
The material constants are as follows:

Modulus of elasticity (strip footing) Er = 300000.0
Modulus of elasticity (soil) Eg = 30000.0
Poisson’s ratio (strip footing, soil) v = 0.2
friction angle/cohesion ¢ =15/c=5— a;y =  0.0917

ke = 5.134
parameter for yield criterion Tpe = 2.0
parameter for yield criterion n = 4.0

Figure 8 shows the load-settlement-curves of point P, located under the foundation (Fig-
ure 1), for all three discretizations. The load bearing capacity computed by the hp-d—
discretizations is up to 6 % higher than the one computed with the pure h-version.
Comparing the solutions of the hAp-d—version we observe that the hp-d—version mesh 1
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Figure 6: hp-d-version mesh 1

Figure 7: hp-d—version mesh 2
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Figure 8: Load-settlement-curves of point P

(Figure 6), discretizing the smaller global domain, supplies the smaller load bearing ca-
pacity. This is due to the fact that the artificial, stiffening boundary conditions are imposed
closer to the local structure.

In Figure 9, 10 and 11 the plastic zones as a result of the three computations for F'=187.5
are plotted. The shape of the plastic zone is very similar for all three discretizations.
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Figure 9: h—version mesh 1: plastic zone (F'=187.5)

Figure 10: hp-d-version mesh 1: plastic zone (F=187.5)

Figure 11: hp-d-version mesh 2: plastic zone (F=187.5)
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5 Conclusions

The aim of this paper is to show that the hp-d-version of the finite element method is a
suitable strategy for solving nonlinear problems with strongly different length scales. The
numerical example demonstrates that the elastic domain of the slope may be discretized
with only a few additional degrees of freedom whereas the local nonlinear problem may
be treated as detailed as necessary due to the geometrically independent overlay mesh.
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