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Abstract

We present an implementation of a three-dimensional p-version for struc-
tural problems of solids with almost arbitrarily curved surfaces. The blending
function technique for geometric mapping allows to design a client server soft-
ware structure, completely seperating the geometric model from the finite element
analysis part of the program. Numerical examples show the efficiency of this ap-
proach.

Introduction

While in the standard h-version of the finite element method the mesh
is refined to achieve convergence, the polynomial degree of the shape functions
remains unchanged. Usually a low order approximation of degree p=1or p =2
is chosen. This principle enforces a loose coupling of a geometric and the corre-
sponding finite element model, as for each refined approximation, a new finite ele-
ment mesh has to be generated starting from the geometric model. The p-version
of the finite element method, on the other hand, leaves the mesh unchanged and
only increases the polynomial degree of the shape functions locally or globally.
In our implementation, a hierarchical set of shape functions is applied, providing
a simple and consistent possibility of implementation in 1-; 2- or 3-dimensional
analysis. Guidelines to construct these meshes a priori can often be given much
easier for the p-version than for the h-version. For linear elliptic problems it was
also proven, that a sequence of meshes can be constructed [10] so that the ap-
proximation error only depends on the polynomial degree p and not on the order
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of singularities in the exact solution, yielding a very high accuracy of the com-
putation, which could not be achieved by the classical h-version in many cases of
practical importance [1].

Our p-version implementation [3] uses a set of hierarchical basis functions,
which can easily be implemented up to any desired polynomial degree [9]. These
shape functions can be grouped into four classes: nodal, edge, internal and, for
three-dimensional hexahedral elements, face modes. Whereas the nodal modes
are identical to the well-known classical bi- or tri-linear shape functions, the
other classes offer the key for an efficient parallelisation of the p-version as well
as for a close coupling to a geometric model in a distributed software system [7, 8].

The blending function method

An important difference between h- and p-version finite element methods
lies in mapping requirements. Because in the p-version the element size is not
reduced as the polynomial degree is increased, the description of the geometry
has to be independent of the number of elements. This results in the necessity
to construct elements with an exact representation of the boundary. The
isoparametric mapping, used in standard finite element formulations, can be
seen as a special case of mapping using the blending function method [4, 5, 9].
Our formulation of this method is based on the work of G. KIRALYFALVI and
B. SzABO [5]. Following these ideas, element boundaries can be implemented as
(almost) arbitrarily curved edges and faces.

Before describing the software structure taking advantage of the blending
function method, some basic concepts of element matrix computation should be
reviewed in the light of this mapping technique. The definition of an element
stiffness matrix

1 1 1
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is given by an integral of a matrix function M, which depends on the shape
functions N, the material properties C, the mapping function Q and the Jacobian
matrix J, with its inverse and determinant J™',| J | .

In general, this integration has to be performed numerically in the
local coordinate system (£,7,() of a standard hexahedral element domain
Qb =[(-1,1) x (=1,1) x (=1,1)]. Therefore, the terms N,C,Q,J*,| J | have
to be computed only at the integration points (&, 7™, (™).

Consider now a hexahedral element, as pictured in Figure 1. X, =
(X5, Y, Z;),t = 1,...,8 denote the global coordinates of the nodes. E; =
(Biz, Biy, Eiz), © = 1,...,12 are functions which depend on local coordinates
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Figure 1: Mapping by the blending function method

(€,m,¢) and describe the shape of each edge. F; = (Fia, Fiy, Fiz), t = 1,...,6 de-
note functions describing the shape of each face. The mapping function Q°(&, 7, ()
from local coordinates &€ = (&£,n, ()7 to global coordinates x = (z,y, z)T is ob-
tained by

8 6 12

x=Qn0 =Y NENOXi+ D fi6&,n Q=D el&n Q). (2

=1 =1 i=1

The first term is the standard mapping of isoparametric eight-noded hexa-
hedral elements using tri-linear shape functions N;. The second term is referred
to as face blending and is a linear function of the face mappings F; , whereas the
third term corresponds to the edge blending being a linear function of the edge
mappings E; (see [3]).

It can now readily be seen, that the Jacobian matrix J containing the
derivatives of the mapping function Q® with respect to the local coordinates &, n
and ¢ depends on the following three groups of geometric information:

e the coordinates of the nodes X; fori=1,...,8

e the (twelve) tangent vectors pee

ar
0F; OF; ; :
e the six tangential planes (8—’ e ), r and s denoting generic local
r {

coordinates.

Therefore the Jacobian matrix at any interior point x(&,7,() of the ele-
ment can be computed only from nodal, edge and surface data which have to be
evaluated at points on the surfaces and edges corresponding in their local coordi-
nates to those of x. Figure 2 shows schematically the essential information on the
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boundary and surface of a hexahedral element for computing J. All these data are
typically available in geometric modellers supplying a boundary representation
model [2] for the description of solids.

integration point
tangent vector -
tangent plane ( g

Figure 2: Geometric information of the edges and faces of an integration point

Summarizing, this blending function technique for mapping the geometry
of p-elements offers the possibility to completely separate all geometric computa-
tions involved in a finite element analysis from the non-geometric part. Further-
more, it is possible to design a distributed software system, where the geometric
model of a CAD-program, although running in a different process or even on a
different computer, is directly linked to a finite element kernel. This software
structure offers the advantage of using all state-of-the-art CAD-techniques like
geometric editing or parametric design in a finite element analysis, immediately.
The increase of efficiency for practical work may be dramatic, as such a system for
computer integrated engineering relieves from the necessity to transfer geometric
data from CAD to FEA, which is usually very time-consuming, even if only some
geometric parameters of the model change.

QOur implementation is based on a client-server architecture, as shown
in Figure 3. The finite element code is the client, requesting all information
on the boundary or surface of an element from a geometry server. We are
using AutoCAD with its ACIS-kernel and the ARX-interface to provide the
geometry information. Assuming that the structural model already exists in the
CAD-environment, the user can define the boundary conditions for the finite
element computation on the geometric model. After having started the finite
element, computation in a different process the relevant data will be received
from the CAD-system. Data of interest are topological information of the finite
element mesh, as well as Neumann and Dirichlet boundary conditions and edge
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and surface data to compute the Jacobian matrix J as described above.
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Figure 3: Client-Server structure of our implementation

The major advantage of this software structure is the direct coupling of
FEA and geometric model. The usual loose coupling of these models consists of
a transfer of the boundary or surface description by some parameters, requiring
that the geometric type of the boundary is not only known in the geometric
modeller but also in the FEA-program. Therefore, the surface description of the
boundary has either to be coded in the finite element program in the same way
as in the geometric modeller, or the boundary must be approximated by some
other type of surface [5]. In contrast to these approaches, our structure does not
need any knowledge on the type of surface, it obtains all necessary information
directly by requesting the mapping data at discrete points. Thus, any change
in geometry of a structure in the geometric model is directly inherited to the
finite element model. The client-server structure is implemented using PVM [6]
as message passing software between the CAD-program and the FEA-code.

A numerical example

As a complex three-dimensional construction we consider a reactor pressure
vessel, loaded by interior pressure (see Figure 4). It is composed of a spherical
and a cylindrical shell-like structure which are merged in a cylindrical solid. The
radius of the spherical shell is R, = 15 and the thickness equals ¢, = 0.06,
while the thickness ratio of the cylindrical part is to/Rs = 0.12/9.80. A mesh
consisting of 85 hexahedral elements, taking advantage of symmetry is chosen to
discretize the structure. The classical approach to this problem would demand for
special elements in order to model the transition from shell- to solid elements (see
right part of Figure 4). Due to the use of three-dimensional continuum p-version
elements the whole structure can be modelled with the same type of discretization
and no transition elements are nceded.
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Figure 4: System and mesh of a complex shell model

A series of computations is performed, based on an isotropic trunk space
SPePnPC (O ) with polynomial degrees p = pe = py = p¢ = 3, ..., 8 (for a detailed
description of the ansatz space see either (3] or [9]. The relative error in energy
norm is plotted in Figure 5.
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Figure 5: Relative error in energy norm of a complex shell model
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Using a polynomial degree of p = 8 with a corresponding number of 24610
degrees of freedom an accuracy with approximately 1.0% error in energy norm
is achieved. This error is estimated from an extrapolation of the strain energies
obtained with polynomial degrees p = 6,7,8 (see [9]).

The deformed structure (scaling factor=1500) and the von Mises stress are
sketched in Figure 6, where the results are evaluated on a fine post-processing
mesh, being obtained by a subdivision of each p-element.
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Figure 6: Von Mises stress on the deformed structure (scaling factor 1500) of a
complex shell model
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