Parallelization strategies and efficiency of CFD
computations in complex geometries using
Lattice Boltzmann methods on
high-performance computers

M. Schulz, M. Krafczyk, J. Tolke and E. Rank

Lehrstuhl fiir Bauinformatik, Technische Universitdt Miinchen, 80290 Miinchen,
Germany

Abstract. A frequently stated property of the Lattice Boltzmann (LB) method is,
that it is easy to implement and that the generation of computational grids is tri-
vial even for three-dimensional problems. This is mainly due to the usually chosen
approach of using full matrices to store the primary variables of the scheme. How-
ever this kind of implementation has severe disadvantages for simulations, where
the volume of the bounding box of the flow domain is large compared to the actual
volume of the flow domain. Thus the authors developed data structures which al-
low to discretize only the fluid volume including boundary conditions to minimize
memory requirements, while retaining the excellent performance with respect to
vectorization of standard LB-implementations on supercomputers. Due to exten-
sive communication hiding using asynchronous non-blocking message transfer an
almost linear parallel speedup is achieved.

1 Introduction

In the past years, the Lattice-Boltzmann method [1,2] was developed as a
valuable complementary approach to classical CFD techniques for solving the
Navier-Stokes equations. The primary variables of this scheme are normalized
particle probability distributions fi(¢,z),i € {0,..., N — 1} which represent
the accupation number of particles on lattice nodes with a discrete velocity
€;. The computations in this work are based on the three-dimensional D3Q15
model [1], where N = 15.

The evolution dynamics of the f; is given by the Lattice-Boltzmann equa-
tion

fi(:c+eiﬂt,t+At)—fi(m,t) = Qi(m,t) (1)
which implies that the computational grid is identical to the lattice defined

by the set of vectors {e:At}.
The collision operator

L e
£2; = T(ﬁ £ 2)

2 M. Schulz et al.

is based on the Single Time Relaxation Aproximation (STRA) and re-
presents the rate of changes due to particle collisions. The relaxation time

6r+1
r= 3)

can be used to tune the kinematic viscosity and defines the rate of approach
to the equilibrium state which is given by a polynomial of the macroscopic
flow properties u and p. These can be defined as moments of the f;:

o) = 3 Filt,) @
u(t,z) = ‘%Zfi(t,m)e,-. (5)

The dynamics of velocity and pressure {which is related to density by an
equation of state, here p = ¢Zp, ¢, - speed of sound) for small Mach numbers
satisfies the Navier-Stokes equations.

Obviously, equation (1) is an explicit Finite-Difference scheme based on
a local stencil. For all grid nodes the collision term only depends on the local
set of probability distributions of the actual timestep and the computation of
the left-hand side of equation (1) requires information from the neighbouring
nodes.

A straightforward approach to implement equation (1) is to map the dis-
cretized flow domain onto a uniform grid using full matrices to store f;. The
obvious advantages are:

o The generation of grids is trivial, even for complex geometries such as
porous media. All nodes are marked with respect to being part of the
flow or solid domain by using a flag matrix which can be directly obtained
from e.g. computer based tomography.

¢ Neighbour relationships between nodes are known due to the topologi-
cal simplicity of the full matrix approach and allow an easy and effective
memory access. This in turn permits very effective vectorization and par-
allelization when using domain decomposition based on geometric slicing
of the simulation domain.

Yet for many practical problems there is a serious drawback: If the volume
of the flow domain is small compared to the volume of its bounding box, the
use of full matrices results in a severe waste of memaory.

Concerning parallelization, two additional points have to be taken into
account:

e Load balancing:
Especially when considering inhomogeneous simulation domains, for a
huge number of parallel processes it is no longer possible to subdivide
the computational domain into slices or cuboids without severe load im-
balancing,.

Parallelization Strategies and Efficiency of LB-computations 3

e Memory consumption:
Even if for a moderate number of subdomains resonable load balancing
with respect to an equal number of degrees of freedom (DOF) per sub-
domain can be achieved, the memory consumption per subdomain can
vary significantly which may be critical for performance on distributed
memory hardware.

To avoid these problems, we developed an efficient data structure which
on the one hand maintains most of the advantages of a uniform grid, such
as good performance in terms of Flop rate and which on the other hand in
many cases drastically reduces memory consumption. In addition, the main
problems of using full matrices for weakly connected flow domains in parallel
simulations are completely cured.

2 A data structure based on indirect adressing

The propagation step (evaluation of the left hand side of eq. (1)) for an
implementation using full matrices for e.g. f1 assuming e; = (1, 0,0) typically
could be implemented as (pseudo-code):

for(x=max_x-1 ; x>0 ; x--) {fi(x,y,z) = f1(z-1,y,2)

Using a topologically unstructured grid (i.e. a uniform cartesian grid with
"holes”), neighbouring nodes are no longer immediately known. Having lost
this natural ordering, one can take advantage to sort the distributions to
optimize data flow for the computation of the collision term with respect to
the boundary condition type as depicted in Figure 1.

I i]
\ A J (S Al J [N O T
Auid fluid no-slip no-slip pressure pressure
node 1 node 2 node 1 node 2 node 1 mnode 2
fluid nodes no-slip BC nodes pressure BC nodes '

Fig. 1. sorting within the one-dimensional array f[] according to nodal boundary
attributes

Propagation now implies copying distributions to arbitrary places within
the one-dimensional array. The corresponding origins and destinations have
to be stored in precomputed lists. Using only one array for the distributions
this information has to be stored using two additional index arrays to store
the target and source indices which minimizes memory consumption.

The propagation of e.g. fi assuming e; = (1,0,0) results in

4 M. Schulz et al.
for(i=0 ; i<num_propagations ; i++) f(target(i)) = f(source(i))

where num_propagations is the number of propagations required. This
approach results in a moderate performance due to the two indirect adressing
operations. Using an additional copy array for the f; only one dereferencing
is necessary:

for(i=0 ; i<num_propagations ; i++) f_copy(target(i)) = f(i)

This roughly doubles the computational performance at the price of a
slight increase in memory requirements.

The following example shows the advantage of using an unstructured grid
with respect to memory requirement for a porous flow geometry with a po-
rosity of 20% (Fig. 2, no-slip boundaries are shown in black and surround the
flow channels) and the grid resolution of the x-ray tomography of 83 x 83 x 30
was increased using three-dimensional interpolation [5] by a factor of five.

Fig. 2. Porous flow geometry: a) 3D-view, b) slicing for low resolution, ¢) slicing
for high resolution (factor 5)

Depending on the chosen scaling factor (i.e. grid resolution) the expected
decrease in memory consumption as compared to the use of full matrices are
shown in Fig. 3.

3 Domain decomposition

Having abandoned the use of full matrices the geometric domain decompo-
sition is no longer restricted to produce cuboidal subdomains. Thus we can
utilize a state-of-the-art tool based on graph partitioning methods (METIS
[3]) to obtain arbitrarily shaped subdomains which leads to very good load
balancing even for a large number of subdomains for any flow geometry. An
example is given in Fig. 4.

Parallelization Strategies and Efficiency of LB-computations 5

1800
T ! uniform ——
perfermance oplimized -
1600 memory optimized -
Grid 1: 8B3x B3x 30
1400 Grid 2: 168 x 166 x 60
5 Grid 3; 249 x 249 x 90
= 1200 Grid 4:332x 332 x 120 b
5 Grid 5: 415 x 415 x 150
E 1000 1
H
8 800 - &
&
E 600 B
E
400 i
.-
200 "
0 et & b L
1 2 3 4 5

scaling faclor

Fig. 3. Memory consumption for different grid resolutions

Fig. 4. METIS domain decomposition of a porous medium

4 Parallelization strategy

As indicated above, all necessary information for a nodal update is basically
obtained from next neighbouring nodes as is depicted in Figure 5.

P 2 4 PI
interface
nodes

B J \inn:r
nodes
0l B
PO

Fig. 5. Cut through the decomposed flow domain indicating the interface width

6 M. Schulz et al.

The information that has to be transferred between pairs of subdomains
in each timestep depends on the length and width of the mutual interfaces.
Asymptotically, the ratio of the computational effort for the inner and inter-
face nodes is proportional to the inverse of the number of inner nodes, thus
a reasonable parallel efficiency can be expected as the cost for the computa-
tional overhead due to data exchange becomes vanishingly small for subdo-
mains of increasing size.

There is still room for fine tuning as it is well known that any parallel ef-
ficiency can be further improved by partially overlapping the process of data
exchange between subdomains and the interface-independant computation
(in case of appropriate network hardware). For the LBGK implementation
proposed here this overlapping can be optimized by computing the collision
term of the interface nodes and a subsequent initiation of their propagation
to the corresponding subdomains by using asynchronous non-blocking mes-
sage passing calls of the underlying MPI library [4]. After this initiation the
collision and propagation of the inner nodal distributions (being by far the
computationally dominant part) is done. Thus there is additional time left for
the completion of the message transfer. Figure 6 shows the difference between
the standard approach and the optimal one presented here.

read subdomain(s)

read subdomain(s)

nonblocking send
boundary nodes

nonblocking time loop
receive

communication

nonblocking
time locp receive
communication

Fig. 6. flow chart for the standard parallel-LB algorithm and the optimal imple-
mentation (right)

propagation

propagation
— boundary nodes

propagation
inner nodes

propagation
boundary nodes

It should be noted, that the propagation of the interface distributions is
naturally taken care of by the communication routine.

Parallelization Strategies and Efficiency of LB-computations 7
5 Results

The data structure explained above was implemented on an eight machine
DEC EV 6 workstation cluster as well as on the Bundeshdchstleistungsrechner
Hitachi SR8000-F1 being located at the Leibniz-Rechenzentrum Munich. On
the Hitachi a two-level parallelization was implemented, as each node of
this machine consists of eight processors sharing memory. Thus the auto-
parallelizing compiler took care of the intra-node communication. On one
computational node we obtain an update rate of up to 2 x 107 (in other words
the computation of one timestep of eq. (1) for a grid of 2 x 107 grid nodes
takes about one second). This corresponds to about 3 GFlops. The inter-
nodal communication was based on the message-passing scheme explained
above.

A parallel efficiency of about 0.9 was achieved for various testruns (Fig. 7).
Taking into account that the test cases investigated utilized at most 25 % of
the nodal memory, the parallel efficiency for subdomains of maximum size
can be estimated to be even closer to one.

Speedup (30 SR-800D)

1 2 3 4 5 6 7 a
#nodes.

Fig. 7. decomposed flow domain

As a numerical example we computed the friction factor (a non-dimen-
sional measure for the permeability of a flow geometry) for a sphere packing
generated by a molecular dynamics type simulation tool [6]. Figure 8 shows
one half of the sphere packing inside a cylinder containing more than 1000
spheres. The diameter of one sphere corresponds to thirty grid nodes resulting
in an overall system of about 1.7 x 107 nodes. The porosity with respect to the
bounding box of the surrounding cylinder is 27 %, the bounding box volume
would correspond to 4 x 107 nodes. The computation time (excluding data
IO) using four nodes of the Hitachi SR8000-F1 was about 75 minutes.

The resulting friction factor coincides within 3 % with measurements ob-
tained from experiment [7] and direct numerical simulation on a flow geom-
etry with evenly distributed spheres [8].

8 M. Schulz et al.

. TR TN
o A e _ﬁ;r
.‘*'J\if\ SECYTE el
¥y T S o
5 e LT ek . 3 1 %
= % fa e \‘ﬁ ALl e ! By &
OO e r
r PR o
i
—

Fig. 8. flow geometry

6 Acknowledgement

The authors would like to thank the HPC group at the Leibniz-Rechenzentrum
for valuable technical support. The project is funded by the Deutsche Forschungs-
gemeinschaft (Ra 624/7-1).

References

1. Quian, Y.H., d'Humieres, D. and Lallemand, P. (1992) Lattice BGK models
for N-§ equation. Europhys.Lett.17(6), 479-484

2. Krafczyk, M. (2001) Gitter-Boltzmann-Methoden - von der Theorie zur An-
wendung. Professorial Thesis LS Bauinformatik TU Miinchen

3. Karypis, G., Kumar, V. (1998) Multilevel Algorithms for Multi-Constraint
Graph Partitioning.
http:/ /www-users.cs.umn.edu/~karypis/publications/partitioning. htm]

4. http://www-unix.mcs.anl.gov/mpi/index.html

5. Engeln-Miillges, G., Reutter, F. (1996) Numerikalgorithmen. VDI Verlag 1996,
ISBN 3-18-401539-4

6. Ristow, G. H. (1994) Granular Dynamics: a Review about recent Molecular Dy-
namics Simulations of Granular Materials. Annual Reviews of Computational
Physics I, 275-308

7. Durst, F., Haas, R., Interthal, W, (1987) The Nature of Flows through Porous
Media. J. Non Newtonian Fluid. Mech 22 , p.169-189

8. Bernsdorf, J., Brenner, G., Durst, F. (2000) Numerical analysis of the pressure
drop in porous media flow with lattice Boltzmann (BGK) automata. Comp.
Phys. Com.129, 247-255

