1 Network Evaluation: Diameter, Bisection Width, and Cost

Network evaluation is based on different parameters. For instance, the diameter of a network is the maximum distance between any two processing nodes in the network, where the distance between two processing nodes is defined as the shortest path (in terms of number of edges) between them. The bisection width of a network is defined as the minimum amount of edges that have to be removed in order to separate the network into two equal parts.

a) Calculate the diameter and the bisection width, depending on the maximum amount of nodes N and the dimension d only, for the following network topologies

- linear array (chain),
- ring,
- binary tree,
- d-dimensional torus,
- d-dimensional hypercube.

b) Calculate the costs – defined as number of edges – for the network topologies describes in a), depending on the maximum amount of nodes N and the dimension d only.

c) Compare the above topologies according to diameter, bisection width, and costs and explain which one has the best cost-benefit ratio.

2 Shortest Path Routing

a) Given is a 2-dimensional mesh with size $M \times N$, the nodes are labelled from 1 to M in x-direction and from 1 to N in y-direction. Consider two arbitrary nodes n_1 and n_2 with coordinates (x_1, y_1) and (x_2, y_2), resp. How many different shortest paths from node n_1 to node n_2 do exist? Give a general formula for calculating the amount of shortest paths for two arbitrary nodes n_1 and n_2, depending on x_1, y_1, x_2, y_2, M, and N only.

b) Given is a d-dimensional hypercube. Consider two arbitrary nodes n_1 and n_2 with coordinates $v_1^1 v_2^1 \ldots v_{d-1}^1 v_d^1$ and $v_1^2 v_2^2 \ldots v_{d-1}^2 v_d^2$, resp. How many different shortest paths from node n_1 to node n_2 do exist? Give a general formula for calculating the amount of shortest paths for two arbitrary nodes n_1 and n_2, depending on d, $v_1^1 v_2^1 \ldots v_{d-1}^1 v_d^1$, and $v_1^2 v_2^2 \ldots v_{d-1}^2 v_d^2$ only.