1 Parallel Summation

For the parallel summation of \(N^2 \) integer numbers a 2-dimensional torus of size \(N \times N \) is used, where each computing node stores exactly one integer \(val \leftarrow rank+1 \). The parallel summation algorithm works as follows:

\[
\begin{align*}
\text{sum} & \leftarrow \text{val} \\
\text{tmp} & \leftarrow \text{val} \\
\text{for } i & \leftarrow 1 \text{ to } N-1 \text{ do} \\
& \quad \text{MPI_send(tmp, 1, MPI_INT, left neighbour, ...)} \\
& \quad \text{MPI_recv(tmp, 1, MPI_INT, right neighbour, ...)} \\
& \quad \text{sum} \leftarrow \text{sum} + \text{tmp} \\
& \text{od} \\
\text{tmp} & \leftarrow \text{sum} \\
\text{for } i & \leftarrow 1 \text{ to } N-1 \text{ do} \\
& \quad \text{MPI_send(tmp, 1, MPI_INT, lower neighbour, ...)} \\
& \quad \text{MPI_recv(tmp, 1, MPI_INT, higher neighbour, ...)} \\
& \quad \text{sum} \leftarrow \text{sum} + \text{tmp} \\
& \text{od}
\end{align*}
\]

a) Describe how this algorithm works for a \(3 \times 3 \) torus, where the nodes are labelled rowise (starting with rank 0) from top left to bottom right.

b) Dependent on \(N \) only, determine the number of necessary computing steps (i.e. \(T(p) \)) of the parallel program (communication is to be neglected) and, thus, give an approximation for the speed-up and parallel efficiency. Sketch the parallel efficiency in a small diagram and discuss these results!

c) Implement the above program using MPI and test it for different values of \(N \), running your code on the cluster of the Chair for Computation in Engineering.