1 Collective Communication

Given is a 2-dimensional torus of size $N \times N$. Nodes are labelled from 1 to N in both
dimensions where node (1, 1) resides in the upper left corner and node (N, N) in the
lower right corner of this topology. For implementing a broadcast, each node – after
receiving – always forwards the received information both to its right and lower
neighbour. This procedure – starting from one dedicated root node – successively
continues until all nodes have been informed. In order to keep this procedure
‘symmetric’, the root node should also receive from its other two neighbours.

a) Sketch the single steps of this algorithm (drawing arrows between sender and
receiver nodes) for a 4×4 torus with node (1, 1) as root!

b) Give an MPI implementation (a communication skeleton is enough) of the above
algorithm using correct send/receive statements and also think about
dependencies! To keep communication simple, you may refer to a node’s
neighbours with left, right, up, and down instead of MPI ranks.

2 Communication Pattern

Given is the following MPI code fragment (with mod denoting the division with
remainder and div the integer division).

```idl
for i ← N to 1 do
  off ← 2^i
  shift ← (rank div off)*off
  dest ← (rank mod off + off/2) mod off + shift
  MPI_Send (val, 1, MPI_INT, dest)
  MPI_Recv (tmp, 1, MPI_INT, dest)
  if val < tmp then
    min ← val; max ← tmp
  else
    min ← tmp; max ← val
  fi
  if rank < dest then
    val ← min
  else
    val ← max
  fi
od
```
a) In totally, there are N communication stages where $p = 2^N$ processes are involved. Sketch the communication pattern using arrows (MPI_Send only) for $N = 3$ stages with $p = 8$ processes.

```
0  0  0  0
1  1  1  1
2  2  2  2
3  3  3  3
4  4  4  4
5  5  5  5
6  6  6  6
7  7  7  7
i = 3  i = 2  i = 1
```

b) Processing the data within the loop body takes T_{EX} time, exchanging two elements (i.e. both send and receive) between processes p_i and p_i takes $T_{COM} = 3 \cdot T_{EX}$ time. Assuming $T(1) = p^2 \cdot T_{EX}$, compute the speed-up depending on N only and sketch it for different values of N! What do you observe?

c) Sketch for $N = 3$ and the given initialisation of the variable val how this value changes during program execution and describe what the program computes!

```
0 val = 6  0 val = 0 val = 0 val =
1 val = 7  1 val = 1 val = 1 val =
2 val = 4  2 val = 2 val = 2 val =
3 val = 2  3 val = 3 val = 3 val =
4 val = 1  4 val = 4 val = 4 val =
5 val = 0  5 val = 5 val = 5 val =
6 val = 3  6 val = 6 val = 6 val =
7 val = 5  7 val = 7 val = 7 val =
initial setup  i = 3  i = 2  i = 1
```