Parallel Computing

PD Dr. rer. nat. habil. Ralf-Peter Mundani
Computation in Engineering / BGU
Scientific Computing in Computer Science / INF

Winter Term 2016/17
Part 2: High-Performance Networks

640k is enough for anyone,
and by the way, what’s a network?
—William Gates III,
chairman Microsoft Corp., 1984
overview

- definitions
- static topologies
- dynamic topologies
- examples
Definitions

- reminder: protocols

<table>
<thead>
<tr>
<th>3-component model</th>
<th>ISO/OSI model</th>
<th>internet protocols (examples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>application layer</td>
<td>data transfer, email</td>
</tr>
<tr>
<td>communication</td>
<td>presentation layer</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>system</td>
<td>session layer</td>
<td>IP, ICMP, IGMP</td>
</tr>
<tr>
<td>network</td>
<td>transport layer</td>
<td>network adaptation</td>
</tr>
<tr>
<td></td>
<td>network layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data link layer</td>
<td>logical link control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium access control</td>
</tr>
<tr>
<td></td>
<td>physical layer</td>
<td></td>
</tr>
</tbody>
</table>
Definitions

- **degree (node degree)**
 - number of connections (incoming and outgoing) between this node and other nodes
 - **degree of a network**: max. degree of all nodes in the network
 - higher degrees lead to
 - more parallelism and bandwidth for the communication
 - more costs (due to a higher amount of connections)

- **objective**: keep degree and, thus, costs small
Definitions

- **diameter**
 - distance of a pair of nodes (length of the shortest path between a pair of nodes), i.e. the number of nodes a message has to pass on its way from the sender to the receiver
 - diameter of a network := max. distance of all pair of nodes in the network
 - higher diameters (between two nodes) lead to
 - longer communications
 - less fault tolerance (due to the higher amount of nodes that have to work properly)

- objective: small diameter

\[\text{diameter} = 4 \]
Definitions

- **connectivity**
 - min. number of edges (cables) that have to be removed to disconnect the network, i.e. the network falls apart into two loose sub-networks
 - higher connectivity leads to
 - more independent paths between two nodes
 - better fault tolerance (due to more routing possibilities)
 - faster communication (due to the avoidance of congestions in the network)

- objective: high connectivity
Definitions

- **bisection width**
 - min. number of edges (cables) that have to be removed to separate the network into two equal parts (bisection width ≠ connectivity, see below)
 - important for determining the number of messages that can be transmitted in parallel between one half of the nodes to the other half without the repeated usage of any connection
 - extreme case: Ethernet with bisection width = 1
 - objective: high bisection width (ideal: number of nodes/2)

![Diagram showing bisection width = 4 and connectivity = 3]
Definitions

- **blocking**
 - a desired connection between two nodes cannot be established due to already existing connections between other pairs of nodes
 - objective: non-blocking networks

- **fault tolerance (redundancy)**
 - connections between (arbitrary) nodes can still be established even under the breakdown of single components
 - a fault-tolerant network has to provide at least one redundant path between all arbitrary pairs of nodes
 - **graceful degradation**: the ability of a system to stay functional (maybe with less performance) even under the breakdown of single components
Definitions

- **bandwidth**
 - max. transmission performance of a network for a certain amount of time
 - bandwidth in general measured as megabits or megabytes per second (Mbps or MBps, resp.), nowadays more often as gigabits or gigabytes per second (Gbps or GBps, resp.)

- **bisection bandwidth**
 - max. transmission performance of a network over the bisection line, i.e. sum of single bandwidths from all edges (cables) that are “cut” when bisecting the network
 - thus bisection bandwidth is a measure of bottleneck bandwidth
 - units are same as for bandwidth
Definitions

- **static networks**
 - fixed connections between pairs of nodes
 - control functions are done by the nodes or by special connection hardware

- **dynamic networks**
 - no fixed connections between pairs of nodes
 - all nodes are connected via inputs and outputs to a so-called switching component
 - control functions are concentrated in the switching component
 - various routes can be switched
overview

- definitions ✓
- static topologies
- dynamic topologies
- examples
Static Topologies

- chain (linear array)
 - one-dimensional network
 - N nodes and $N-1$ edges
 - degree = 2
 - diameter = $N-1$
 - bisection width = 1
 - drawback: too slow for large N
Static Topologies

- **ring**
 - two-dimensional network
 - \(N \) nodes and \(N \) edges
 - degree = 2
 - diameter = \(\lceil N/2 \rceil \)
 - bisection width = 2
 - drawback: too slow for large \(N \)
Static Topologies

- chordal ring
 - two-dimensional network
 - \(N \) nodes and \(3N/2, 4N/2, 5N/2, \ldots \) edges
 - degree = 3, 4, 5, ...
 - higher degrees lead to
 - smaller diameters
 - higher fault tolerance (due to redundant connections)
 - drawback: higher costs

- chordal ring of degree = 3
- chordal ring of degree = 4
Static Topologies

- completely connected
 - two-dimensional network
 - \(N \) nodes and \(N \cdot (N-1)/2 \) edges
 - degree = \(N-1 \)
 - diameter = 1
 - bisection width = \(\lceil N/2 \rceil \cdot \lceil N/2 \rceil \)
 - very high fault tolerance
 - drawback: too expensive for large \(N \)
Static Topologies

- **star**
 - two-dimensional network
 - N nodes and $N-1$ edges
 - degree = $N-1$
 - diameter = 2
 - bisection width = $\left\lfloor N/2 \right\rfloor$
 - drawback: bottleneck in central node
Static Topologies

- **binary tree**
 - two-dimensional network
 - N nodes and $N-1$ edges (tree height $h = \lceil \log N \rceil$)
 - degree = 3
 - diameter = $2h$
 - bisection width = 1
 - drawback: bottleneck in direction of root (blocking)
Static Topologies

- binary tree (cont’d)
 - addressing
 - label on level m consists of m bits; root has label ‘1’
 - suffix ‘0’ is added to left son, suffix ‘1’ is added to right son

- routing
 - find common parent node P of nodes S and D
 - ascend from $S \rightarrow P$
 - descend from $P \rightarrow D$

![Binary tree diagram](image)
Static Topologies

- **binary tree (cont’d)**
 - solution to overcome the bottleneck ➔ fat tree
 - edges on level m get higher priority than edges on level $m+1$
 - capacity is doubled on each higher level
 - now, bisection width $= 2^{h-1}$
 - frequently used: HLRB II, e.g.
Static Topologies

- **mesh / torus**
 - k-dimensional network
 - N nodes and $k \cdot (N-r)$ edges ($r \times r$ mesh, $r = \sqrt[k]{N}$)
 - degree $= 2k$
 - diameter $= k \cdot (r-1)$
 - bisection width $= r^{k-1}$
 - high fault tolerance
 - drawback
 - large diameter
 - too expensive for $k > 3$
Static Topologies

- **mesh / torus (cont’d)**
 - k-dimensional network
 - N nodes and $k \cdot (N - r)$ edges ($r \times r$ mesh, $r = \sqrt[k]{N}$)
 - diameter $= k \cdot \lfloor r/2 \rfloor$
 - bisection width $= 2r^{k-1}$
 - frequently used: BlueGene/L, e.g.
 - drawback: too expensive for $k > 3$
Static Topologies

- **ILLIAC mesh**
 - two-dimensional network
 - N nodes and $2N$ edges ($r \times r$ mesh, $r = \sqrt{N}$)
 - degree = 4
 - diameter = $r - 1$
 - bisection width = $2r$
 - conforms to a chordal ring of degree = 4
Static Topologies

- hypercube
 - k-dimensional network
 - 2^k nodes and $k \cdot 2^{k-1}$ edges
 - degree = k
 - diameter = k
 - bisection width = 2^{k-1}
 - drawback: scalability (only doubling of nodes allowed)

4D hypercube
Static Topologies

- hypercube (cont’d)
 - principle design
 - construction of a k-dimensional hypercube via connection of the corresponding nodes of two $(k-1)$-dimensional hypercubes
 - inherent labelling via adding prefix ‘0’ to one sub-cube and prefix ‘1’ to the other sub-cube
Static Topologies

- hypercube (cont’d)
 - nodes are directly connected for a HAMMING distance of 1 only
 - routing
 - compute \(S \otimes D \) (XOR) for possible ways between nodes \(S \) and \(D \)
 - route in increasing / decreasing order until final destination is reached

- example
 - \(S = \text{‘011’}, D = \text{‘110’} \)
 - \(S \otimes D = \text{‘101’} \)
 - decreasing: ‘011’ → ‘010’ → ‘110’
 - increasing: ‘011’ → ‘111’ → ‘110’
• overview
 • definitions ✓
 • static topologies ✓
 • dynamic topologies
 • examples
Dynamic Topologies

- bus
 - simple and cheap single stage network
 - shared usage from all connected nodes, thus, just one frame transfer at any point in time
 - frame transfer in one step (i.e. diameter = 1)
 - good extensibility, but bad scalability
 - example: CSMACD
Dynamic Topologies

- **crossbar**
 - completely connected network with all possible permutations of \(N \) inputs and \(N \) outputs (in general \(N \times M \) inputs / outputs)
 - switch elements allow simultaneous communication between all possible disjoint pairs of inputs and outputs without blocking
 - very fast (diameter = 1), but expensive due to \(N^2 \) switch elements
 - used for processor—processor and processor—memory coupling
 - example: The Earth Simulator

![Diagram of crossbar network](image)
Dynamic Topologies

- permutation networks
 - tradeoff between low performance of buses and high costs of crossbars
 - based on 2×2 switch elements with four switching possibilities
 - straight
 - crossed
 - upper / lower broadcast

- switching \(N \) inputs to \(N \) outputs \(\Rightarrow \) permutation of inputs (to outputs)
 - single stage: one column with \(N/2 \) of 2×2 switch elements
 - multistage: several of those columns
Dynamic Topologies

- permutation networks (cont’d)
 - permutations: unique (bijective) mapping of inputs to outputs
 - addressing
 - label inputs from 0 to $2N-1$ (in case of N switch elements)
 - write labels in binary representation ($a_K, a_{K-1}, \ldots, a_2, a_1$)
 - permutations can now be expressed as simple bit manipulation
 - typical permutations
 - perfect shuffle
 - butterfly
 - exchange
Dynamic Topologies

- permutation networks (cont’d)
 - perfect shuffle permutation
 - cyclic left shift
 - \(p(a_K, a_{K-1}, \ldots, a_2, a_1) \rightarrow (a_{K-1}, \ldots, a_2, a_1, a_K) \)
Dynamic Topologies

- permutation networks (cont’d)
 - butterfly permutation
 - exchange of first / highest and last / lowest bit
 - \(B(a_K, a_{K-1}, \ldots, a_2, a_1) \rightarrow (a_1, a_{K-1}, \ldots, a_2, a_K) \)

<table>
<thead>
<tr>
<th>(a_3)</th>
<th>(a_2)</th>
<th>(a_1)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
B(a_K, a_{K-1}, \ldots, a_2, a_1) \rightarrow (a_1, a_{K-1}, \ldots, a_2, a_K)
\]
Dynamic Topologies

- permutation networks (cont’d)
 - exchange permutation
 - negation of last / lowest bit
 - \(E(a_K, a_{K-1}, \ldots, a_2, a_1) \rightarrow (a_K, a_{K-1}, \ldots, a_2, \overline{a}_1) \)

<table>
<thead>
<tr>
<th>(a_3 \ a_2 \ a_1)</th>
<th>(a_3 \ a_2 \ \overline{a}_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 1 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 1 0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>
Dynamic Topologies

- permutation networks (cont’d)
 - example: perfect shuffle connection pattern
 - problem: not all destinations are accessible from a source
Dynamic Topologies

- permutation networks (cont’d)
 - adding additional exchange permutations (shuffle-exchange)
 - all destinations are now accessible from any source

```
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
```

replaced by 2×2 switch element
Dynamic Topologies

- omega
 - based on the shuffle-exchange connection pattern
 - exchange permutations replaced by 2×2 switch elements
Dynamic Topologies

- **omega (cont’d)**
 - multistage network (for N nodes \rightarrow $\log N$ stages)
 - N nodes and $E = N/2 \cdot \log N$ switch elements
 - $N!$ permutations possible, but only $2^E (< N!)$ different switch states
 - (self configuring) routing
 - compare addresses from S and D bitwise from left to right
 - stage i evaluates address bits s_i and d_i
 - if equal switch straight ($-$), otherwise switch crossed (\times)

- example
 - $S = \text{‘001’}, D = \text{‘010’}$
 - switch states: $- \times \times$
Dynamic Topologies

- omega (cont’d)
 - problem: there exists exactly one route from each input to each output
 - risk of blocking
 - example: simultaneous connections 1 → 0 and 5 → 3
 - 1 → 0: $S = '001'$, $D = '000'$
 - switch states: $\rightarrow - \times$
 - 5 → 3: $S = '101'$, $D = '011'$
 - switch states: $\times \times -$
 - conflicting switch states
Dynamic Topologies

- banyan / butterfly
 - idea: unrolling of a static hypercube
 - bitwise processing of address bits a_i from left to right \Rightarrow dynamic hypercube a.k.a. butterfly (known from FFT flow diagram)
Dynamic Topologies

- banyan / butterfly (cont'd)
 - replace crossed connections by 2×2 switch elements
 - introduced by GOKE and LIPOVSKI in 1973; blocking still possible

![Banyan Tree Diagram](image)
Dynamic Topologies

- **Beneš**
 - multistage network
 - built via merging butterfly network with its copied mirror
 - N nodes and $N \cdot (\text{Id } N) - N/2$ switch elements
 - $N!$ permutations possible, **all can be switched**
 - *key property*: for any permutation of inputs to outputs there is a contention-free routing
Dynamic Topologies

- **Beneš (cont’d)**
 - example
 - $S_1 = 2, D_1 = 3$ and $S_2 = 3, D_2 = 1 \rightarrow$ blocking for butterfly
Dynamic Topologies

- **BENEŠ (cont’d)**
 - example
 - \(S_1 = 2, D_1 = 3 \) and \(S_2 = 3, D_2 = 1 \) → no blocking for BENEŠ

![Diagram showing one possibility of routing](image-url)
Dynamic Topologies

- **CLOS**
 - proposed by CLOS in 1953 for telephone switching systems
 - objective: to overcome the costs of crossbars (N^2 switch elements)
 - idea
 - replace the entire crossbar with three stages of smaller ones
 - **ingress stage**: R crossbars with $N \times M$ inputs / outputs
 - **middle stage**: M crossbars with $R \times R$ inputs / outputs
 - **egress stage**: R crossbars with $M \times N$ inputs / outputs

 - thus much fewer switch elements than for the entire system

 - any incoming frame is routed from the input via one of the middle stage crossbars to the respective output
 - a middle stage crossbar is available if both links to the ingress and egress stage are free
Dynamic Topologies

- **Clos (cont’d)**
 - $R \cdot N$ inputs can be assigned to $R \cdot N$ outputs

![Diagram of Clos topology](image)
Dynamic Topologies

- Clos (cont’d)
 - relative values of M and N define the blocking characteristics
 - $M \geq N$: rearrangeable non-blocking
 - a free input can always be connected to a free output
 - existing connections might be assigned to different middle stage crossbars (rearrangement)
 - $M \geq 2N - 1$: strict-sense non-blocking
 - a free input can always be connected to a free output
 - no re-assignment necessary
Dynamic Topologies

- **reminder: bipartite graph**
 - **definition:** a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V
 - that is, U and V are each independent sets

\[
\begin{array}{c}
\text{division of vertices in } U \text{ and } V, \text{ i.e. there are no edges within } U \text{ and } V, \\
\text{only between } U \text{ and } V
\end{array}
\]
Dynamic Topologies

- reminder: perfect matching
 - definition: perfect matching (a.k.a. 1-factor) is a matching that matches all vertices of a graph, i.e. every vertex is incident to exactly one edge of the matching

<table>
<thead>
<tr>
<th></th>
<th>nurse</th>
<th>pilot</th>
<th>lawyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Carol</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

problem: perfect matching for bipartite graph to be found
Dynamic Topologies

- **Clos (cont’d)**

 - proof for $M \geq N$ via HALL’s “Marriage Theorem”

 - Let $G = (V_{IN}, V_{OUT}, E)$ be a bipartite graph. A *perfect matching* for G is an injective function $f : V_{IN} \rightarrow V_{OUT}$ so that for every $x \in V_{IN}$, there is an edge in E whose endpoints are x and $f(x)$. One would expect a perfect matching to exist if G contains “enough” edges, i.e. if for every subset $A \subset V_{IN}$ the image set $\delta A \subset V_{OUT}$ is sufficient large.

 Theorem: G has a perfect matching if and only if for every subset $A \subset V_{IN}$ the inequality $|A| \leq |\delta A|$ holds.

 - often explained as follows: Imagine two groups of N men and N women. If any subset S of boys (where $0 \leq S \leq N$) knows S or more girls, each boy can be married with a girl he knows.
Dynamic Topologies

- **Clos (cont’d)**
 - proof for $M \geq N$ via Hall’s “Marriage Theorem”
 - boy := ingress stage crossbar
 - girl := egress stage crossbar
 - a boy knows a girl if there exists a (direct) connection between them
 - assume there’s one free input and one free output left

1) for $0 \leq S \leq R$ boys there are $S \cdot N$ connections \Rightarrow at least S girls
2) thus, Hall’s theorem states there exists a perfect matching
3) R connections can be handled by one middle stage crossbar
4) bundle these connections and delete the middle stage crossbar
5) repeat from step 1) until $M = 1$
6) new connection can be handled
Dynamic Topologies

- **Clos (cont’d)**
 - proof for \(M \geq N \) via HALL’s “Marriage Theorem”
 - example: \(M = N = 2 \)

Initial situation: two connections cannot be established

Bundle connections to one middle stage crossbar and delete it afterwards ➔ maybe rearrangements are necessary

Repeat steps until \(M = 1 \), then all connections should be possible
Dynamic Topologies

- **Clos (cont’d)**
 - proof for $M \geq 2N-1$ via worst case scenario
 - crossbar with $N-1$ inputs and crossbar with $N-1$ outputs, all connected to different middle stage crossbars
 - one further connection

![Diagram showing connections between crossbars]

1 \rightarrow n-1 \rightarrow n \rightarrow n-1 \rightarrow 1

\rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots

1 \rightarrow 2n-2 \rightarrow 2n-1 \rightarrow 1

n \rightarrow n-1 \rightarrow n \rightarrow n-1

\rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots
Dynamic Topologies

- constant bisection bandwidth
 - more general concept of Clos and fat tree networks
 - construction of a non-blocking network connecting M nodes
 - using multiple levels of basic $N \times N$ switch elements ($M > N$)
 - for any given level, the downstream bandwidth (to nodes) is identical to the upstream bandwidth (from nodes)
 - key for non-blocking: always preserve identical bandwidth (upstream and downstream) between any two levels

- observation
 - two-stage CBB network connecting M nodes always needs $3M$ ports
 - each node needs two ports in first and one port in second stage
Dynamic Topologies

- constant bisection bandwidth (cont’d)
 - example: two-stage CBB
 - connecting $M = 16$ nodes with 4×4 switch elements
 - hence, in total $3M = 48$ ports (i.e. 6 switch elements) necessary
 - upstream bandwidth = downstream bandwidth
overview

- definitions ✓
- static topologies ✓
- dynamic topologies ✓
- examples
Examples

- **Myrinet**
 - developed by Myricom (1994) for clusters
 - particularly efficient due to
 - usage of onboard (NIC) processors for protocol offload and low-latency, kernel-bypass operations (ParaStation, e.g.)
 - highly scalable, cut-through switching
 - switches
 - consist of 256-port CLOS network
 - based on 32-port crossbar switch chipset
 - can be configured to support as many as 8,192 hosts
 - according to Myricom: used in nearly 38% of Top 500 supercomputers
 - NICs up to 2000 USD per card and switches >300 USD per port
Examples

- Myrinet (cont’d)
 - programming model

![Diagram](image-url)
Examples

- **InfiniBand**
 - unification of two competing efforts in 1999
 - Future I/O initiative (Compaq, IBM, HP)
 - Next-Generation I/O initiative (Dell, Intel, SUN et al.)
 - idea: introduction of a future I/O standard as successor for PCI
 - overcome the bottleneck of limited I/O bandwidth
 - connection of hosts (via host channel adapters (HCA)) and devices (via target channel adapters (TCA)) to the I/O “fabric”
 - switched point-to-point bidirectional links
 - bonding of links for bandwidth improvements: 1× (up to 5Gbps), 4× (up to 20Gbps), 8× (up to 40Gbps), and 12× (up to 60Gbps)
 - nowadays only used for cluster connection

source: serversupply.com
Examples

- InfiniBand (cont’d)
 - particularly efficient (among others) due to
 - protocol offload and reduced CPU utilisation
 - Remote Direct Memory Access (RDMA), i.e. direct R/W access via HCA to local/remote memory without CPU usage/interrupts

- switching: constant bisection bandwidth