Finite elements of high-order in Fluid-Structure interaction

Phd students: Dipl.-Ing. Stefan Kollmannsberger MSc
Principal investigators: Prof. Dr.- Ing. Alexander Düster
Prof. Dr. rer.nat. Ernst Rank
Sponsorship: Deutsche Forschungsgemeinschaft
Homepage of the research project: DFG Forschergruppe 493 Fluid-Struktur-Wechselwirkung: Modellierung, Simulation, Optimierung
Project partners: iRMB - Institute for Computational Modeling in Civil Engineering TU
Fachgebiet Numerische Berechnungsverfahren im Maschinenbau
Institut für Angewandte Mathematik / Lehrstuhl III - Angewandte Mathematik und Numerik
Institut für Angewandte Mathematik / Lehrstuhl Numerische Mathematik
Institut für Statik, Baumechanik und Bauinformatik / Lehrstuhl für Statik
Fakultät für Maschinenwesen / Lehrstuhl für Numerische Mechanik
Fakultät für Informatik / Lehrstuhl für Informatik mit Schwerpunkt Wissenschaftliches Rechnen

Project description

This project is part of a common effort of the groups mentioned above to asses the suitability of different discretization methods in Fluid-Structure interaction. For this purpose, the group has developed two different benchmark setups. One is of purely theoretical nature while the other is a realistic experiment performed in a flow channel. The two configurations each have different variants, so that a total of five benchmarks emerge.

Core of this project is to asses the suitability of structural high-order finite elements in partitioned fluid-structure interaction and test it against the proposed benchmarks. In the course of our work we have contributed to an especially designed coupling library and extended our in-house code AdhoC to couple to different types of fluid solvers via this library. So far, these include the commercial Finite Volume Code "CFX", the spectral finite element code for fluids "nektar" by Prof. Karniadakis and "Virtual Fluids", a Lattice-Boltzmann based code by a group lead by Prof. Krafczyk.

In the course of this project, we developed new coupling techniques for coupling to the Lattice-Boltzmann code "Virtual Fluids" in cooperation with Prof. Krafczyk. We are especially pleased that we managed to validate and verify this coupling setup against the proposed benchmarks.

{denvideo /fsi.flv}
Experiment versus simulation

The experimental setup is depicted on the left-hand side of the figure presented above. The right-hand side shows its computation by utilizing the Lattice-Boltzmann Method as implemented in Virtual Fluids for the fluid and high-order finite elements as implemented in AdhoC for the structure. The experiment consists of a cylinder with an attached flag. The vortices in the fluid flow initiated by the cylinder cause a periodic excitation of the flag which starts to swing.

This type of self excited vibration is of interest in many practical engineering designs, e.g. air plain wings or turbine blades, high-rise buildings or bridges excited by wind loads. This project sets out to contribute to the understanding and efficient calculation of these phenomena.


  • Geller S, Kollmannsberger S, Bettah M, Scholz D, Krafczyk M, Düster A, Rank E:
    An explicit model for three-dimensional fluid-structure interaction using LBM and p-FEM.
    Fluid-Structure Interaction,  ed. by Bungartz, H.-J. and Schäfer, M., to appear, Springer Verlag 2010
  • Kollmannsberger, S.; Geller, S.; Duester, A.; Rank, E.; Toelke, J.; Krafczyk, M.:
    Fixed-grid Fluid-Structure interaction in two dimensions based on a partitioned Lattice Boltzmann and p-FEM approach. , International Journal for Numerical Methods in Engineering 2009
  • Kollmannsberger, S.; Duester, A.; Rank, E.:
    Force Transfer for High Order Finite Element Methods using Intersected Meshes. In: 11th International Symposium on Emerging Technology in Fluids, Structures, and Fluid-Structure Interactions, within the ASME Pressure Vessel and Piping Conference, July 22-26, 2007, San Antonio, Texas, USA 2007
  • Geller, S.; Toelke, J.; Krafczyk, M.; Kollmannsberger, S.; Duester, A.; Rank, E.:
    A coupling algorithm for high order solids and lattice Boltzmann fluid solvers. In: Proceedings of the European Conference on Computational Fluid Dynamics, ECCOMAS 2006, TU Delft, The Netherlands: P. Wesseling, E. Onate and J. Periaux, editors 2006
  • Kollmannsberger, S.; Scholz, D.; Duester, A.; Rank, E.:
    FSI Based on Bidirectional Coupling of High Order Solids to a Lattice-Boltzmann Method. In: 10th International Symposium on Emerging Technology in Fluids, Structures, and Fluid-Structure Interactions, within the ASME Pressure Vessel and Piping Conference, July 23-27, 2006, Vancouver, Canada, 2006
  • Scholz, D.; Kollmannsberger, S.; Duester, A.:
    Thin solids for fluid structure interacion. In: Fluid-Structure Interaction: Modelling, Simulation, Optimisation LNCSE 53 (34595-7), ed. by Bungartz, H.-J. and Schäfer, M., p. 294-335, Springer Verlag 2006
  • Kollmannsberger, S.:
    Fluid-Struktur-Interaktion mit Bezug auf das Bauwesen. In: Progress in Bauinformatik. Forum Bauinformatik 2005, ed. by von Schley, F.; Weber, L., p. 68-74, Cottbus, Germany 2005
    ISBN: 3-934934-11-0

Master and PhD Theses

Contact: Dipl.-Ing. Stefan Kollmannsberger MSc