

Efficient Software for Computing Correlated K-Ss Tomographs

Dr. Chin Man 'Bill' Mok, Institute of Advanced Studies Dr. Iason Papaioannou, Engineering Risk Analysis

Computational Modeling of Saturated Flow

Governing differential equation:

$$\nabla \cdot (K\nabla h) + S_s \dot{h} = q$$

$$K = K(x, y, z) = \text{hydraulic conductivity}$$

$$S_s = S_s(x, y, z) = \text{specific storage}$$

$$h = h(x, y, z, t) = \text{potentiometric head}$$

$$q = q(x, y, z, t) = \text{source/sink rate}$$

Finite element solution:

 $[K]{h}+[S_s]{\dot{h}}={q}$

Hydraulic Tomography – *'CAT scan' of the subsurface*

Yeh and Liu (2000) to estimate the spatial distributions of K and Ss (tomographs/images) by applying hydraulic stresses at various locations sequentially and observing the hydraulic responses at other measurement locations

(From Professor Jim Yeh at University of Arizona)

Software Lab Project Tasks

In this software lab project, the students will:

- (1) develop a program to compute the hydraulic responses (h) to hydraulic stresses (q) by using linear 3D finite elements to solve the governing differential equation;
- (2) implement the adjoint sensitivity method to efficiently compute the first-derivatives of h with respect to K and Ss at each pixel;
- (3) test the significance of incorporating K-Ss correlation on the tomographs using data at University of Waterloo experimental site.

(Optional) – If time allows, implement efficient representations of correlated K-Ss fields to obtain compressed high-resolution tomographs for large scale problems.