sam_back

 

Computational Steering for Orthopaedics




Project team leader Dr. Martin Ruess

PhD students This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.
Zhengxiong Yang

Principal investigators PD Dr. Rainer Burgkart, Clinic for Orthopaedics and Sportorthopaedics
Prof. Reiner Gradinger, Clinic for Orthopaedics and Sportorthopaedics
Prof. Ernst Rank, Chair for Computation in Engineering
PD Dr. Alexander Düster, Chair for Computation in Engineering
Prof. Rüdiger Westermann, Chair for Graphics and Visualization
Dr. Jens Krüger, Chair for Graphics and Visualization

Project partners This email address is being protected from spambots. You need JavaScript enabled to view it., Dept. of Mechanical Engineering,
Ben Gurion University of the Negev, Israel

Sponsorship Siemens AG

Homepage of the
IGSSE-research project

Computational Steering for Orthopaedics



Project description

Fast and reliable methods for predicting and monitoring in-vivo bone strength are of major importance in clinical applications such as fracture fixation or endoprothesis for joint replacement. Furthermore, the development of implants calls for highly efficient and robust analysis tools which allow during a design loop to match the mechanical properties of implants with those of the individual bone in order to avoid adaptive remodelling with cortical thinning and increased porosity of the bone. The main objective of this project is to develop and implement a prototype of such an analysis tool. In a first field of application this prototype shall be used for patient specific selection of endoprostheses design and size.

 

Therefore, it is planned to extend the newly developed Finite Cell Method, which is a high order fictitious domain method, in order to be able to automatically derive and analyse a numerical model based on quantitative computed tomography angiography (QCT) scans. Unlike other numerical methods for structural simulation the Finite Cell Method needs no new mesh generation in case of modification of the structural geometry thus avoiding a time consuming remodelling step.

 

bild
Models of the simulation

 

In order to allow navigation and exploration of the analysis results and to facilitate an interactive design loop of implants, special emphasis will be placed on the development of interactive 3D visualization techniques as well as the development of a computational steering approach. Surface rendering of the implant as well as direct volume rendering of the bone interior will be used to support an intuitive understanding of the complex 3D analysis model.

 

The development of dedicated compression schemes for the large amount of numerical simulation data in the design loop is one of the key aspects for a seamless integration of simulation and visualization into the medical workflow. In a validation step the results of the numerical analysis are correlated with those from biomechanical tests in order to get information about the accuracy of the virtual approach. Among a validation of the strain distribution biomechanical properties of bone specimen as elasticity and stiffness are compared to the parameters of the computational model derived from CT-data.



Publications
  • J. Parvizian, A. Düster, E. Rank: Finite Cell Method: h- and p-extension for embedded domain problems in Solid Mechanics, Computational Mechanics, 41:121-133, 2007
  • A. Düster, J. Parvizian, Z. Yang, E. Rank: The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Engrg., 197:3768-3782, 2008
  • A. Düster, J. Parvizian, Z. Yang, E. Rank: A high order fictitious domain method for patient specific surgery planning, Proceedings of APCOM ’07 in conjunction with EPMESC XI, Kyoto, Japan, December 3-6, 2007.
  • Z.Yosibash, R. Pedan, L. Joskowicz, C. Milgrom: A CT-based high orde finitee element analysis of the human proximal femur compared to in-vitro experiment, Journal of Biomechanical Engineering, accepted fot publication, 2006
  • B. Szabo, A. Düster, E. Rank: The p-versiond of the finite element method. In: E. Stein, R. de Borst, T.J.R. Hughes (editors), Encyclopedia of Computationals Mechaics, Volume 1: Fundamentals, Chapter 5, pp. 119-139, John Wiley & Sons, 2004
  • A. Borrmann, P. Wenisch, C. van Treeck, E. Rank: Collaborative Computational Steering: Prinzipals an Applications in HVAC Layout, Integrated Computer-Aided Engineering, 13(4): S. 361-376, 2006
  • J. Krüger, R. Westermann: Acceleration Techniques for GPU-based Volume Rendering, Proceedings of IEEE Visualization, 2003
  • J. Krüger, P. Kipfer, P. Kondratieva, R. Westermann: A Particle System for Interactive Visualization of 3D Flows, IEEE Transactions on Visualization and Computer Graphics Vol. 11, No. 6
  • P. Kipfer, R. Westermann: GPU Construction an Transparent Reendering of Iso-Surfaces, VMV Conference 2005
  • J. Krüger, J. Schneider, R. Westermann: clearView: An Interactive Context Preserving Hotspot Visualization Technique, IEEE Transactions on Visualization and Computer Graphics (Proceedings of IEEE Visualization 2006)
  • J. Georgii, R. Westermann: A Generic and Scalable Pipeline for GPU Tetrahedral Grid Renderin, IEEE Transactions on Visualization and Computer Graphics (Proceedings of IEEE Visualization 2006)
  • J. Georgii, R. Westermann: Interactive Simulation and Rendering of Heterogeneous Deformable Bodies, Vision, Modeling and Visualization 2005
  • J. Georgii, R. Westermann: A Multigrid Framework for Real-Time Simulation of Deformable Bodies, Computers & Graphics, Vol. 39, No. 3, 2006
  • R. Burgkart, RR. Glisson, CS. Fulghum, A. Kölling, W. Plötz, AV. Seaber, T. P. Vail: Primary stability of interoperatively produced custom-made cementless femoral components. Proc. EORS 4 (1994) 68. Combined BARS/EORS Meeting, April 11-12, London UH (Proc. EORS, Vol. 4 S. 11 (1994))
  • E. Steinhauser: Biomechanische grundlagen der Implantatverankerung. In: Gradinger R., Golwitzer H. (eds): Ossäre Integration. Springer, Heidelberg. 2006, 16-23
  • R. Burgkart, R. Glisson: Spannungsverteilung und Primärstabilität bei vollstrukturierten vs. teilstrukturierten Femurkomponenten. In: Gradinger R., Golwitzer H. (eds): Ossäre Integration. Springer, Heidelberg. 2006, 126-131
  • W. Mittelmeier, P. Peters, R. Ascherl, R. Gradinger: Rapid Prototyping - Modellherstellung zur präoperativen Planung von rekonstruktiven Beckeneingriffen. Orthopädie 26 (1997), 273-279
  • R. Burgkart: Entwicklung und experimentelle Evaluation neuer 3D Simulations- und OP-Techniken am proximalen Femur mittels fluoroskopie-basierter Navigation. Habilitation thesis, Lehrstuhl für Orthopädie und Sportorthopädie, Fakultät für Medizin, Technische Universität München, 2006


Contact: Dr. Martin Ruess


Lehrstuhl | Fakultät | TUM